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A B S T R A C T  

A family of the spherical fractional integrals Tar =%~,~ f2~ Ixyla-lf(y)dy 
on the unit sphere Nn in R n+l is investigated. This family includes the 
spherical Radon transform (c~ = 0) and the Blaschke-Levy representation 
(c~ .> 1). Explicit inversion formulas and a characterization of T~f  are 
obtained for f belonging to the spaces C °°, C, L p and for the case when f 
is replaced by a finite Borel measure. All admissible n _ 2, c~ C C, and p 
are considered. As a tool we use spherical wavelet transforms associated 
with T °.  Wavelet type representations are obtained for TC~f, f C L p, in 
the case Re c~ _< 0, provided that T ~ is a linear bounded operator in L p. 

0. I n t r o d u c t i o n  

O u r  i n v e s t i g a t i o n  is m o t i v a t e d  by the  fo l lowing p rob lems :  (1) How to  def ine  

wave l e t  t r a n s f o r m s  on  t h e  sphere .  (2) How to  inver t  i n t eg ra l  o p e r a t o r s  

/ 1 / 
(0.1) ( B q f ) ( x )  = Ixy lqf (y)dy ,  ( R f ) ( x ) -  iN~_l l  f (y)dcr(y)  

~,, { yE En :xy=O } 

a n d  to  c h a r a c t e r i z e  t he i r  ranges ,  e.g.,  for f E L P ( E n )  or  f E C(En) .  I n s t e a d  of  

f ,  a f in i te  Bore l  m e a s u r e  on  E~  can  be  cons ide red .  Di f fe ren t  a p p r o a c h e s  to  (1) 

c a n  be  f o u n d  in t h e  p a p e r s  by W.  P reeden  and  U. W i n d h e u s e r ,  J .  G o e t t e l m a n n ,  
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M. Holschneider, P. SchrSder and W. Sweldens, B. Torresani; see also [11]. The 

integral F = Bqf, where q > 0 is not an even integer, is called the Blaschke-Levy 

representation of F ([1, 8]). Among the authors, who studied this representation, 

are A. D. Aleksandrov, R. J. Gardner, P. R. Goodey, H. Groemer, A. Koldobsky, 

R. Schneider, W. Weil (for more information see [3, 6]). The inversion formula 

for F = Bqf was obtained by Koldobsky [6] for q > 0 excluding the cases (a) q 
even and (b) q odd, n even. His method employs the Fourier transform on R n+l 

(see also the earlier paper by Semyanistyi [16]). The second integral in (0.1) is 

known as the spherical Radon transform [5, 12]. 

We study the more general analytic family 

C ( ( 1 -  a)/2)  / ]xy]~_lf(y)dy ' a e C, a ¢ 1,3,5, . .  (0.2) (T'~f)(x)- 27r,/2F(a/2) ., 

arising in evaluation of the Fourier transform of homogeneous functions [15] (if 

Re c~ < 0, then (0.2) is understood in the sense of analytic continuation; for 

c~ = 1, 3 , . . . ,  see [13]). By Corollary 2.6 (see below), T ~ is bounded in LP(~n), 

1 < p < oc, if and only if Rec~ > (1 - n)/2 + ]l/p - 1/2](n - 1). Let us explain 

the connection between the problems (1) and (2). Since T~'f -~ 0 for f odd, in 

the following f is assumed to be even. By using the formula 
1 

f a ( x y ) f ( y ) d y  = O'n-1 / a(T)(M~-f)(x)(1 - T2)" /2- 'dT,  (0.3) 
J . 1  

~,, - 1  

(0.4) (Mrf)(x) = (1 - r2) (1-n)/2 f f(y)da(y), 
Crn-- 1 J 

X y z T  

r e ( -1 ,1 ) ,  o~-1 = F ~ - l h  

we write T~f in the "one-dimensional" form 

1 

f ~_~r((1 - ~)/2) T'~f = # ,~ ,~  r ~ / 2 - 1 ( 1  - r)'~/2-1M,/vf dr, % , .  = 2 7 r . / 2 / , ( a / 2  ) , 

0 

0 < Reck< 1. 

Put  7- = ts, then multiply both sides by s -=/2, and integrate with respect to an 

arbitrary sufficiently nice measure # such that ~,~, =- f o  s-'~/2dl~(s) ~ O. After 

changing the order of integration we get 
O O  

(0.5)  T'~f = c /2 '  e = 2 ~ " / 2 5 . , . r ( ~ / 2 ) / r ( ( 1 -  e ) / 2 ) ,  

0 
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1# 

= an-1 / ( 1  -- ts) '~/2-1M,/~f d#(s). (0.6) (W~f) (x , t )  
o 

As we shall see below, (0.5) can be extended analytically to Re a < 0 provided 
that  # enjoys some cancellation. The integral (0.6) will be called the continuous 
wavelet transform of f generated by the wavelet measure # and associated with 

the operator family {Ta}. 
By choosing # in a suitable way one can write (0.6) in different forms. For 

example, if # is absolutely continuous, i.e. d#(s) = w(s)ds, then (0.3) yields 

W , f  = W f ,  where 

1/ 
(0.7) ( W f ) ( x , t )  = ~ Ixylw(]xyl2/t)f(y)dy. 

By putting u(s) = sw(s2), t = T 2,  7 :> 0, we get ( W f ) ( X , T  2) -~ (Wuf)(X,T) 

where 1/ 
- u(Ixyt/~-)f(y)dy. (0.8) ( w u f ) ( x ,  = 

E~ 

The wavelet transform (0.8) was introduced in [12]. If 

t 
(0.9) /~ = ~ ( - - 1 ) k  (ek) 6k, eCN,  

k=0 

where ~k = ~k (s) is the unit Dirac mass at the point s = k, then (0.6) reads 
t /aN 

(0.10) (W~f) (x , t )  = a n - 1  ~--~(-i)k (~ ) (1  
k=0 

More general discrete measures (see [11], Sections 10.1, 10.2) can be also used. 

Some comments are in order. The "usual" wavelet transform f -+ ( f  • gt)(x) 
on ]R n, generated by the scaled version gt of a radial wavelet function/measure 

g, can be "discovered", as above, starting from Riesz potentials ( Iaf ) (x)  = 
cu,c, fR~ I x - y l~ ' -n f ( y )  dy, and using the generalization of Marchaud's method [11, 

p. 169]. These transforms provide a localization at a point (in accordance with 

the point singularity of the kernel of I~f ) .  Similar spherical wavelet transforms 

(with a point localization) were introduced in [1!]. In our case, which is typical 

for the integral geometrical setting, the localization is achieved in a neighborhood 

of a "big circle" representing the set of singularities of the kernel Ixyl a-1. Our 

"wavelet transform" is just a tool, which enables us to  build analytic continuation 

of T ~ f  for Re a _ 0 in a "nice" form (see [14] for further examples). 
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THEOREM A (inversion of T~):  Let R e a  > 0, a ¢ 1 , 3 , 5 , . . . ,  fl = 

(n + a - 1)/2. Assu/ne that p is a finite Bore1 measure  on [0, co) such that 

O 0  

(0.11) f sJd#(s) = 0 for all j = 0, 1 , . . .  , [Re/~], 

o 

(0.12) 

O 0  

f a~dlizl(s ) < ~ for some~ > Re~. 
o 

(i) / f ~  = T~ f , f E L p, 1 <_ p < oo, then 

O 0  O 0  

(o.13) f tl+(nd _l)/2 :-  ¢-~olim f 
0 c 

dt 
t l + ( n + a - 1 ) / 2  = c~,.f(x) 

(L p) a.e. 
where l im = lim = lim and c~,~ is defined by 

(0.14) c~, ,  - r((n + .)/2) 

r(-9)0fs  ,(s) 

(-11 +1 f fl[ s 3 log s d#(s) 
o 

i f / 3  # 0, 1 , 2 , . . . ,  

otherwise. 

(c) 
(ii) If f 6 C, then (0.13) holds with lim = lim. 

Example: Consider  the integral equat ion fn~ [xy[f(y)dy = ~(x)  with the cosine 

t r ans fo rm in the lef t-hand side [3, p. 379]. By Theo rem A (for a = 2), f(x) = 
c~ 1 f o  ( W ~ ) ( x ,  t)dt/t (n+3)/2, provided tha t  

27f~_1/2 F( (n  + 3)/2)  / s('~+l)/2d#(s) 
if n is even, 

o 

c~ -- F(1 + n/2) (n+1)/2 
( - 1 )  fs(~+l)/21ogsdp(s) if n is odd, 
((n + 1)/2)! j 

c t, ~- 0, and # satisfies (0.11)-(0.12) wi th/~ = (n + 1)/2. 

Our  next  result  concerns the  wavelet representa t ion of T~f, f E L p, in the  

case Re a _< 0, when (0.2) fails, bu t  T ~ is still bounded  in L p. Assume tha t  
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(Wf)(x , t )  is the wavelet t ransform (0.7) with w represented by the fractional 

integral w(s) = (I°#o)(s) = ( l /F (0 ) )  Jo(s - t)O-td#o(t), 0 >_ O, where / t0  is a 

finite Borel measure.  Let 

m = 

OO 

f @  ( ) 82 0 S ~ 0  

0 

[- Re~/2  + 0] 
[ -  Re a / 2  + 0] + 1 

for s o m e T >  { - 

Vj = 0, 1 , . . . , m ;  

if { -  Re a/2 + O} < 1/2, 

if { - R e a / 2  +O} _> 1/2; 
O O  

f s~dlt*0l(s) < oo, 
0 

Re ~ / 2 + 0 + 1 / 2  if { -  Re ~/2 + O} < 1/2, 
R e a / 2 + O +  1 if {- Re~/2 + 0} ___ 1/2; 

O 0  

r(~/2)fs-~/2w(s)ds if - ~ / 2  # O, 1, 2 , . . . ,  
_ 2 7rn/2 0 

O 0  
_ I--c~/2 

d ~  F ( ( i - a ) / 2 )  ( ~  f s -~ /2w(s )  logsds  otherwise. 

0 

THEOREM B: Let (1 - n)/2 + [1/p - 1/21(n - 1) <_ R e a  < 0, 1 < p < oo, 

0 _> 1 + R e a / 2  + [ (Rea  + n - 1)/2]. Ifd~,,  # O, then for f E L p, 

O 0  

1 / (Wf ) (x , t )d  t 
TC~ f - d~,u tl-~/2 

o 
O 0  

- lim 1 / (Wf)(x,t)d t 
e~0  ~ t l - - a /2  

in the LP-norm and a.e. 

COROLLARY C (representat ion of the spherical Radon transform; cf. [12, Th.  

1.2]): Let O = 1 + [(n - 1)/2]. Assume that w(s) is a 0 - 1 times continuously 
differentiable function on [0, oc) such that w(e-1)(s) is absolutely continuous on 
[0, oo). Moreover, let 

(a) w(k)(0) = 0, w(a)(s) = o(s -k-t)  as s - +  oo; k = 0 , 1 , . . . , 0 -  1; 

(b) f o  w(s)ds = O; 

(c) f l  s~l~(°)(s)l ds < ~ for some ~ > o + 1/2, 

(d) xn,w = (27rn/2/F(n/2)) f ~  w(s)log(1/s)ds # O. 
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Then for f • L p, 1 < p < oc, (Rf)(x)  = lime-+0 --1 f ~ ( W f ) ( x , t ) d t / t  in the Xn~O 

LP-norm and a.e. 

The paper is organized as follows. Sections 1 and 2 contain preliminaries 

and basic properties of (0.2). Section 3 is devoted to relations which link up 

wavelet transforms with T~f ,  f • C ~ .  In Section 4 we prove Theorem A and 

characterize the range of T ~, R e a  > 0, on functions f belonging to L p, C, and 

on finite Borel measures. Apart from Theorem A, the main results are stated 

in Theorems 4.4 and 4.5. Section 5 contains the proof of Theorem B and an 

analogue of Theorem A for Re a <_ 0. 

ACKNOWLEDGEMENT: The author is grateful to the referee for valuable remarks 

improving the original text of the paper. 

1.  P r e l i m i n a r i e s  

Notation: ~,~ is the unit sphere in N '~+1, n > 2; 

G~ = I~nl = 27r(~+~)/2/r((n + 1)/2) .  

We denote by {Yj,k(x)}, x e En, the orthonormal basis of spherical harmonics 

on Nn. H e r e j  • Z+ = {0 ,1 ,2 , . . . } ;  k = 1 , 2 , . . . , d n ( j )  where d,~(j) is the 

dimension of the subspace of spherical harmonics of degree j .  The notation 

L p = LP(Nn), C = C(N~), C ~ = C~(En)  is standard. The Fourier-Laplace 

decomposition of f • C ~ is written as f = ~ j ,k  fj,kYj,k (for more information 

about analysis on En see [11, 15] and references therein). Apart from the Jacobi 

polynomials P(~'~)(~-) and the Gegenbauer polynomials C} n-  1)/2 (T), we will use 

(1.1) Hi(T) = (F(j + 1) F(n - 1) /F( j  + n - 1)) CJn-1)/2(T). 

The following relations hold [2]: 

(1.2) IHj(~)I ~ 1, Hj(1)=I ,  

(-1)J/2 r((j  + 1)/2) r(n/2) for j even, 
Hj (0) = 7rl/2 P( ( j  + n ) / 2 )  

0 for j odd. 

The Funk-Hecke formula [2] reads 

F (1.3) /r .  a(xy)Yj(y)dy = )~Yj(x), )~ = an-1 a(~-)(1 - T2)n/2-1Hj(T)dT, 
n 1 
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where Yi is a spherical  harmonic  of degree j and xy is the usual inner product .  

In the following [a] designates the integer par t  of a • R; {a} = a - [a] • 

[0, 1); a+ = max(a ;  0); N+ = [0, oc). The  abbreviat ions  "<"  and "-~" indicate 

"<<_" and "=" if the la t ter  hold up to a constant  multiple. 

LEMMA 1.1: The  mean  value operator (0.4) enjoys the following properties: 
(a) 

(1.4) sup IIM, fllp <_ Ilfllp, f • LP, 1 < p ~ c~. 

(b) For a spherical harmonic Yj(x) of degree j, 

(1.5) (M~Yh)(x) = HA~)Yj(~). 

(c) I f  f • C~(En) ,  then (M~f) (x)  • C°° ( [ -1 ,  1]) in the ~-variable for each 

x • En. If, moreover, f is even, then (M~f)(x)  is an infinitely differentiable 

function of T 2. 

The  s t a t emen t s  (a) and (b) are known. The  first s t a tement  in (c) follows f rom 

(M~f ) (x )  = ~ j , k  Hj(7")fj,kYj,k(x) because {Yj,k(x)l = o(j'~/2-1), fj,k = o( j -m) ,  

j -+ cx3, for all m > 0. The  second s ta tement  in (c) is clear, since fj,k = 0 for j 

odd,  and Hj (7-) with j even is a polynomial  of T 2. 

The  next  s t a t ement  concerns spherical convolutions of the form 

(1.6) (K~I)(x)  = [_ k~(xy)f(y)dy,  
J 2~ n 

( 1  
- k - -  , e > 0 .  

C 

LEMMA 1.2 ([12]): Let f be an even measurable function on En, (K* f ) ( x )  = 

sups>0 I ( K j ) ( x ) [ .  I f  k(s) has a decreasing integrable majorant, then K* f < f*, 

where 

(1.7) f*(x)  = sup 1 L If(y)ldy, a~(x) = {y • E,~: xy > T}. 
.e(-1,1) I~.(x)l ~(x) 

We will need the Riemann-Liouvi l le  fractional  integrals [11] 

(1.8) 

/o 1/? 1 (s - t ) 'X-ld~(t) ,  (I1~-¢)(~') - F(A) (t - T) 'x- l~( ' r )d~.  ( t ~ . ) ( s ) -  r(~) 

Here Re,~ > 0, ~, is a Borel measure  on N+, ¢(T) is a function on (--1, 1). 
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LEMMA 1.3: Let A' = ReA > 0, k C Z+, 

(1.9) sJd~,(s) = 0 for all j = O, 1 , . . . , m  = 

Isr. J. Math. 

i ra  ~ Z+, 

otherwise; 

0.10) 

Then 

(i) 
(1.11) 

f oo s~dl~l(s) < oo for some ~/> A' ÷ 1~. 

( O ( S )  

O(s-k-a ) ,  6 = min(~ - A' - k, 1 - {A'}), ( 

(ii) 

(1.12) 

Proo~ 

ifO < s < 1, 

i f s  >_ 1, 

/o" ( + )( ) S t (--1)A+I~0 °c A! s ~ l o g s d u ( s )  i f A c Z + .  

( (i) We have ( I J + ~ ) ( s )  = (fo/2 + f ~ / 2 ) ' " )  = g ( s ) +  h(s) where, by 

(1.10), Ih(s)l ~ ~" f:~/2dlul(t) ~ s ~'-~ = s -k-('r-:~'-k). In order to est imate 

g(s),  let 

(1.1a) 
(~ - t)~ ( - t ) J  s~-J (-1)m+1 (t - 77)m(8 - ~)A-m-ldr]  

F ( A ÷ I )  - j! F ( A + I - j )  ÷ m i F f l i n )  j=o 

(for A e Z+ the integral term disappears). Then g(s) -- ~ j = o  cjgj(s) ,  

i 
s /2  

gj(s)  = s A-J tJdu(t),  j = 1 , . . . , m ;  
Jo 

l /o gm+l(s) = du(t) (t - , ) m ( s  - ~ ) ~ - ~ - l a , ,  
J0 

cj (j = 0, 1 , . . . , m  + 1) being the corresponding coefficients. For j <_ m the 

relations (1.9) and (1.10) yield I g j ( s ) l  = s;-Jl f£/2 Pdu(t)[ < s ~'-'~. The term 

g,~+t(s) can be est imated by making use of the formulae 2.12(1) and 2.9(3) 

from [2]: 

f 
s / 2  

(1.14) [gm+t(s)[ • 8 A ' -m-1 tm+lF(m ÷ l - A ' , l ; m  + 2; t / s )  d[ul(t ). 
Jo 
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If A' > 0, then according to 2.8(46) from [2], 
~1/2 ~s/2 

(1.15) [gm+l(S)] ,~< S'V-m-I ( ]  0 + J1/2 )~:m+id[v[(t) 

(I.I0) 
~ SX'--min("Y,m+l) : 8 -A-8, 

5 = rain(7 - A' - k, 1 - {A'}) G (0, 1]. If A' = O, then (1.14) yields 

,gm÷i(s)l < m+ l [ s/2 ~' - -  t m ÷ : d l ~ , l ( t )  ~ m d n  
sm J O S -- ?It 
1 [#2 

tm+ldlvl(t) < s-k-~ 
8m+1 dO 

(cf. (1.15)). The second relation in (1.11) is proved. The first one is obvious. 

(ii) Let us prove (1.12). By (1.11), (I~+Av)(s)/s E LI(R+). Hence it suffices 

to find the limit Jo -- limt-~0 J(t) where J(t) = foe- t~( I I+Av) (s )ds / s .  By 

changing the order of integration and using the formula f oo e_t.(s _ u)Xds/s = 
(DO uaF(A + 1) f~,t e - ' r F ~ - l d v  [4], we get J(t) = foo dv/v:,+~ , ,  fo e-~'dv(u),  Jo = 

fO dv//vA+l fO e-UVdl/(u)" By (1.9), 

/0 /0 J0 = vX+l - j! j 
j=0 

= d.(~) e_~._ (-~)J] d~ 
j=0 J! J vX+:' 

and integration by parts leads to (1.14). | 

2. Bas ic  p rope r t i e s  of  t he  spher ica l  f rac t iona l  in tegra ls  

Assume that  T ~ f  and R f  are defined by (0.2) and (0.1) respectively. 

LBMMA 2.1: Let R e a  > 0. For a spherical harmonic Yj(x) of degree j ,  

(2.1) 
(_1)J/2 F( j /2  + (i - a)/2)  

(T~Yj)(z) = cj,~Ys(x), c¢,~ = r ( j / 2  + (-n + ~ i f j  is even, 

0 if j is odd. 

Proof." For j even the result follows from (1.3), (1.1), and the formula 2.21.2(5) 

from [10]. If j is odd, then (2.1) is obvious. | 

For R e a  > 0, T ~ is bounded in L p, 1 < p < co. By (1.2), (0.3), and (2.1), 

(2.2) R = Mo = 7r-U2F(n/2) T °. 

Hence, by (1.4), all operators in (2.2) are bounded in L p, 1 < p <<_ co. 
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LEMMA 2.2: K f • C~(E,~), then T ~ f  can be extended to alt ~ E C as a 

meromorphic function of a with simple potes at the points a = 1, 3, 5 , . . . .  

Proo~ Let f = f+ + f - ,  f+(x)  -- ( f (x)  + f ( - x ) ) / 2 .  Then T ~ f  = T ~ f  + = 

3',,,~c~n-1 f-~l Itl~-~( 1 - t2) "n - 'Mt f+d t  Hence 

(2.3) T ~ f =  

1 
~r-"/2a,~_lC((1 - a) /2)  2--ff y f - -  T)n/2-1Mv~f+d% 

0 

R e a  • (0,1), 

and the result becomes clear due to Lemma 1.1 (c). I 

In the following the notation T ~ will also be used for Re a ~ 0. Thus, 

(2.4) ( T ~ f ) ( x ) = E c j , ~ f j , k Y j , ~ ( x ) ,  f e C  °°, a e C  ( a ~ 1 , 3 , 5 , . . . ) ,  
j ,k  

cj,~ : ( -1 )J /2F( j /2  + (1 - a ) / 2 ) / F ( j / 2  + (n + a) /2)  for j even and cj,~ = 0 for 

j odd. 

LEMMA 2.3: I r a  ~ {1 ,3 ,5 , . . . } ,  then T~: C ~ ~ C~ven is a / /nea r  continuous 

map. I ra  ~ {1, 3, 5 , . . .  } U { - n , - n - 2 , - n - 4 , . . .  }, then T "  is an automorphism 

of C~v¢n and 

(2.5) (T~) -1 = T 1 . . . .  . 

This statement follows immediately from (2.4) because cj,~ = 0( j0- ,~-2~)/2)  

a s  j - - -+ c o .  

For R e a  __< 0, the behaviour of T~ f ,  f C L p, is rather delicate. In order to 

make it clear we consider the more general operator family defined on f E C °° 

by  

(2.6) (A~f)(z) = ~-~i ~r( j /2+ (1 - a)/2) f~,ky~,k(x) ' a • C;a ¢ 1 , 3 , 5 , . . .  
~,k r ( j / 2  + ( n ~ a ) / 2 )  

(see [15]). The latter coincides with T ~ f  for f even. Given ~/ E R and p C 

(1, co), let L~ = L~(E,~) be the Sobolev space, which consists of distributions 

with the property: for each f E L~ there is a function f(~) E L p such that  

fj(~) ,k = (J + 1)TfJ, k for all Fourier-Laplace coefficients. We put IlfliL~ = Ilf(~)lIp • 
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THEOREM 2.4: Let 1 < p < oc, (~ E C; a :fi 1, 3, 5, . . . .  
(i) The operator (2.4) can be extended as a linear bounded operator, acting 

from L.~ into LTB provided 

(2.7) R e c ~ _ > 7 - / 3 - ~ + n - 1  ~ _ 2 1  ( n - l ) .  

(ii) I f  (2.7) fails, then there is an even function fo c i~p such that T~fo ~ L~. 

Proo~ Let f = f+ + f - ,  f+(x)  = ( f (x )  ± f ( - x ) ) / 2 .  Then T " f  = T ~ f  + = 

A ~ f  +, [If+llL~ <-- ]lf]lL~ The estimate IIA~fI[L; <~ Ilfl]L~ is equivalent to 

ilAlfIIL~ <~ llfIIp, 5 = 7 - / 3  - Re a +  1. This can be easily checked by using the 
Strichartz multiplier theorem [17]. The above estimate of A l l  holds if and only 

if (2.7) is satisfied [7]. In order to prove (ii) it suffices to reproduce the argument 
from [7, Section 5] for the function fo(x) = ( I - A ~ ) - ~ / 2 [ F ~ ( x n + l ) +  F~(-Xn+l)] 

where A2 is the Beltrami-Laplace operator on En and F~ is defined by the 
equality (52) (or (54)) from [7]. II 

By making use of the argument from [7, 9] it is not difficult to obtain sharp 
conditions under which T ~ is bounded from L~ into Lq 7 with q > p. 

Leven and the spaces of functions (or distributions), Denote by P "/ Lp,even even 

belonging to L p and Lp 7 respectively, with usual norms. 

COROLLARY 2.5:  Lp,even C Ta(LePven) C Lp,even , provided 

P (n n - 1 ~ 1 ( n -  n - 1  1 1 - 1 ) ,  5 = R e  a + ~ +  - 1), 
( 2 . s )  = R e  + - - 7 -  - - 

a ~ { 1 , 3 , 5 , . . . } U { - n , - n - 2 , - n - 4 , . . . } .  

5 The right embedding follows from Theorem 2.4 with/3 = 0. If f E Lp,even , 
then f = T ~ T  1 . . . .  f where T l - ~ - ~ f  E L p (use Theorem 2.4 with/3 = 5 and 

7 = 0). 
By Corollary 2.5 and Theorem 2.4, it is impossible to characterize T~(L p) in 

terms of the Sobolev spaces for p # 2. We will do this later with the aid of 

wavelet transforms. 

COROLLARY 2.6: For 1 < p < ~ ,  R e a  < 0, T ~ is bounded in L p if and only if 

(2.9) R e a >  1 - n  ~ ~ _ + - ( n - l ) .  
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3. Sp he r i ca l  wave le t  t r a n s f o r m s  and  aux i l i a ry  r e l a t ions  for  

C ~ - f u n c t i o n s  

Since T ~ f  =_ 0 for f odd, in the following we deal with even functions f only and 

write C ~ instead of Cg~en (similarly for L p and other spaces). It is convenient 

to deal with wavelet transforms of the form (0.6). 

LEMMA 3.1: Le t  f E L p, 1 < p < oo, n > 2. 

(i) I f #  is a f ini te  Borel  measure  on ]~q_, then 

(3.1) I IWj I Ip  < 2r=/hn/2-~l l f l lv(Z+/21pD(1/ t)  <<_ 2~r~/211~11 Ilfllp 

where  II~ll is the  total  variation o f  [Pl- 

(ii) I f  d#(s )  = w ( s ) d s  and w = I~# o ,  0 > O, for s o m e  f ini te  Borel  measure  Po, 

then  

(3.2) IIw, flIp < 27r~/2t=/2-111fllv(I+/2+°l/~ol)(1/t) <_ 2~rn/2t-°ll~ol[ IIfIIv" 

Proof:  By (1.4), from (0.6) we have 

(3.3) l 
l/t 

[[W~f[[p ~_ an_ill f[[ p (1 - ts)n/2-1d[/~[(s) 
J o  

= 2~n/2tn/2-1l l f l lp(I+/2I~l)(1/ t  ) 

which gives (3.1). The statement (ii) is a consequence of (3.3). 

Due to (0.5) and (2.5), one can expect 

~0 °° 
(3.4) f = c ( W z T ~ f ) ( x , t )  dt  , p = ( n +  a -  1)/2, 

for suitable # and c = c(a,  #) .  The precise sense to (3.4) will be given later. Now 

we start  with some preparations. Consider the operator family 

(3.5) (Mgf)(x) = ~ u~(t)fj,k~,k(x), 
j,k 

(3.6) 
r((n + a)/2)  r(1 + j /2)(1  - t~-(~+l)/2P ((n+~)/2-1,-(~+1)/2)11 - 2t), 

r ( ( j  + n + a) /2)  = ' j/2 t* 

assuming f E C °°, 0 < t < 1, - n  < R e a  < 1. We recall that  f is even. 
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LEMMA 3.2:  

there is a constant CK,I such that 

(3.7) 

(ii) 

(3.8) 

Proof: 
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(i) For each compact set K in the strip - n  < Re a < 1 and f E C °°, 

sup I(Mgf)(x)] <_ CK,I(1 - t) -(Reck-I-I)/2 
x 

V a E  K. 

lim(M~f)(x) = f(x) uniformly on E~. 
t--+O 

Owing to the formula 2.22.2(2) from [10], we have 

pj ( (n+a) /2-1  -(c~+1)/2), x (8 + 1) (a+1)/2 

/2 ' (s) = B ( a -  (a  + 1 ) /2 ,1  - a + j / 2 )  

x 0" + 1) -*(  s - "~*-a-(~+1)/2P(°+(~-a)/2'-°)(r) dr 
- -J  ~j/2 

1 

for each a such tha t  1 > a > ( R e a  + 1)/2. If a > (3 - n)/4, then [2, 10.18(12)] 

p(~+(~-3)/2,-~) ( a + (n - 5 + j)/2 ) 
(3.9) max  " j /2  ( T ) I =  

-1<7<1 j /2 ' 

1 (mod t))  and therefore (one can assume ~ ¢ 

pj((n+a)/2-1,-(a+l)/2) -F-(I ~-a-+-j~) V(1 + j/2) /2 (s)l <_ c~,~ V ( ( 1 -  a + j ) / 2 )  r ( a +  ( n -  3 + j ) / 2 )  , 

F(1 - a) V ( a -  (Re a + 1)/2) 

c~,~ = i F ( a _  (a  + 1)/2)1 F ( ( 1 -  R e a ) / 2 )  F(cr + ( n -  3) /2)"  

Due to the propert ies  of F-functions [11, p. 390] it follows tha t  for each compact  

set K in the strip - n  < Re a < 1 there  exists a constant  CK such tha t  

(3.10) lu~(t)l < CKj-ae~(1 --t) -(Re~+l)/2 Va e g .  

This  implies (i). The  second s ta tement  is clear, because u~(0) = 1 (see [2, 

lO.8(3)1), m 

LEMMA 3.3: Let f E Coo, 1 - n < R e a  < 1,/3 = (n + a - 1)/2, n >_ 2. Then 

(3.11) r ( ( n  + a ) / 2 )  
V(n/2)  (1 - t)~/2-1Mv/~T~ f = (I~l_M~)f)(t), t e [0, 1), 



14 B. RUBIN Isr. J. Math. 

where Mvq and I~_ are de/ined by (0.4) and (1.8) respectively. 

Proof: It suffices to prove (3.11) for spherical harmonics f = Yj of even degree 

j .  By (1.5), (2.4) and (3.5), the equality (3.11) reads 

r ( ( n  + a ) / 2 ) ( 1  - s )~ /2-1Hj(v~)  = (I~_u~)(s),  0 <_ s < 1. (3.12) cj,. r(n/2) 

Owing to the formulae 3.15.1(5) and 10.8(16) from [2], we have 

1 (-1)z2r(1 + j / 2 )  p (_ l /2 ,n /2_ l ) (  1 _ 28). 
(3.13) F (n /2 )  Ha (x/~) = ~ ~ )  j/2 , 

Thus,  the left-hand side of (3.12) has the form 

cj ,~(_l)j /2 F(1 + j /2 )  F((n  + (~)/2)(1 - 8)n/2-1pj(~ 1/2'n/2-1) (1 - 2s). 
r ( ( j  + n) /2)  

By [10, 2.22.2(2)] this coincides with the right-hand side of (3.12). | 

Now we pass to justification of the inversion formula (3.4) for f E C ~ .  Denote  

f oo dt 
(3.14) ( T e ~ ) ( x )  = ( W ~ ) ( x ,  t)t-i- ~ ,  ~ = (n + ~ - 1)/2, 

and assume (0.11) and (0.12) for 1 - n < Rec~ < 1. In the case Rec~ = 1 - n we 

suppose 

(3.15) d#(s) = w(s)ds, w = lotto for some 0 > O, 

// (3.16) J @ o ( S )  = 0 for all j = 0, 1 , . . . ,  [Re /3 + 0], 

/o (3.17) s~°dlttoF(s) < cc for some 3'o > Re /3 + 0. 

Remark  3.4: For short,  sometimes we write # = I ° # o  in bo th  cases. If 0 = 0, 

it means tha t  # = tto, and for 0 > 0 this equality is unders tood as (3.15). In 

part icular,  one can assume 0 to be an integer and w(s) to be such tha t  w(0) = 

w'(O) . . . . .  w(°-1)(0) = 0 with w(°)(s) satisfying (3.16), (3.17). 

By Lemma 3.1, for ~p E L p, p E [1, e~], we have 

(3.18) II~vllp _< ~-Z'-°II~II~, p' = Re /~, 0 > 0. 
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LEMMA 3.5: Let f • C ~,  1 - n < R e a  < 1, n > 2, fl = (n + a - 1)/2. Assume 

that p is chosen according to (0.11)-(0.12) and (3.15)-(3.17). Then 

f 
l / e  

(3.19) TcFTSI= Ac~(s)M~sfds, As(s )=  2~-n/2 "Ii+~"~(s], 
Jo s r ( ( n + c ~ ) / 2  t + " "  " 

(3.20) As • LI(R+), 

where c~,~ is de/~ned by (0.14). 

Proof: 

fo ~ As(s)ds = cs,~, 

Let first 1 - n < R e a  < 1. The relations (0.6) and (3.11) yield 

2:rn/2t~ / 1 #  
(W, TS f ) ( z , t )  - F((n + a) /2)  J0 (IZ+#)(~)Mt}f @" (3.21) 

Indeed, by putting g(7) = M ~ f  we have 

2~nl2 f i t  f l- t ,  d#(s) 7fl-l g(ts -~- T)dT 
W ' T S f  = F((n + a)/2) F(Z) J0 J0 

27rn/2tfl f l / t  f l / t  
= d#(s) (~ - s)fi-lg(t~) d~ 

r ( ( ~  + ~) /2)  r ( z )  ~o .~ 

2~/~tz f l#  g(t¢)(I~+,)(~)d¢ ' 
r ( ( ~  + ~) /2)  ~0 

We note that  I0~+tt C LI(R+) (see Corollary 4.13' from [11]). Furthermore, 

;1. 
~ T S f  - F((n + a) /2)  g(u) (I~+#)O?)d~ -- Jo g(~s) As(s) ds. 

The change of the order of integration can be justified by using (3.7). The 

relations (3.20) and (0.14) are implied by Lemma 1.3. The validity of (3.19) 

for Re (~ -- 1 - n follows by analytic continuation (use Lemma 3.1 and Lemma 

3.2(i)). If w = I°#o, then, owing to (3.16) and (3.17), by Corollary 4.13' from 

[11] we have f o  w(s)ds = 0, and f ~  s~[w(s)lds < c~ for some V > 0. By Lemma 

1.3 these yield (3.20) and (0.14). II 

THEOREM 3.6:  If  # satisfies (0.11)-(0.12) and (3.15) (3.17), then for each 

x C ~n, 

f oo dt 
lira (W.TS f ) (x , t )  tl+(~+s_l)/2 - cs, . f(x) ,  f e C ~,  1 - n < R e c r < l ,  ~---~0 ¢ 
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where c~,, is the constant  (0.14). 

Proof'. 

Isr. J. Math. 

One has to check the equality lim~-,0 T~T'~f  = c~,uf. Due to (3.19), 

I 1/2e ~_ I 1/6 ) 
T c ' T ~ f  = ( A~(s)M~s f ds = A~,i f  + A~,2f. (3.22) 

JO J 1 / 2 ¢  

By (3.7), (3.8) and (3.20), we get lim~_~o A ~ f  = c~, , f .  The term A,~,2f tends 

to 0, because by (1.13) and (3.7), [A~,2f [ < fl/~e(X -¢ s ) - (~ '+ l ) / 2 s -a - ld s  = 

O(e~), 5 > 0, a '  = Re a.  II 

4 .  L P - t h e o r y  ( t h e  c a s e  R e a  > 0) 

LEMMA 4.1 

(4.1) 

(an integral representation of (3.5)): Let R e a  > 0, f E C ~ .  Then 

(Mgf)(x) = I kT(zy)f(y)dy, 
g }z 

r ( ( n  + ~) /2)  , 
(4.2) k~(T) -- 2 ~ f f ~ ( ~  ~ (1 -- t)-(~+i)/2tl-(~+n)/2lrl(t -- 1 + 7 2 ) ; / 2 - 1 .  

Proof: According to the Funk-Hecke formula (1.3) it suffices to show tha t  

an_ lF ( (n  + a ) /2)  (1 - t)-(a+l)/2t 1-(~+'~)/2 
2~n/2r(a/2) 

/: x ITl(t - 1 + ~-2)+/2-1(1 - T2)n/2-1Hj('r)d'r = uj(t) 
1 

(see (3.6)). Put  ~_2 = s, 1 - t = u. Then the above relation can be checked by 

using (3.13) and the formula 2.22.2(7) from [10]. | 

By analyticity, (3.19) can be extended to all R e a  > 0 (a ¢ 1, 3, 5 , . . .  ). Below 

we construct  this analytic continuation and show its convergence as e --+ 0. 

LEMMA 4.2: Let R e a  > 0, a ¢ 1 , 3 , 5 , . . . .  Assume that f E C ~ and # satisfies 
(0.11), (0.12). Then there exist spherical convolution operators A~,I and A~,2 

such that 

(4.3) '-l-c'~T°'f = A~,l f  + A~,2f, 0 < ~ < 1//2, 

and the following assertions hold: 
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(a) 

(4.4) sup 
O<e<I/2 

where f* is the maximal function (1.7) and c2 is independent of e. 
(b) For each spherical harmonic Yj of even degree j ,  

~-~01im A ~ I Y  j ,  = c~,~Yj, e~,~ being defined by (0.14). (4.5) 

(c) 

(4.6) 

Proof: 

IA~,~fl ~ c~f*, llAma, l flip ~ c2llfllp Vp~ [1, oc], 

(4.9) A~,2(T ) = ITI r ( n  + a ) / 2 )  
2~r"/2F(a/2)  

f l/e _ c~12-I 
x Aa(s)(1 £8)--(a+1)/2(~s)i--(a+n)/2(T2 1 + cs)+ ds. 

J1/2c 

We regard (4.3) as the analytic  continuation (a.c.) of (3.22) to {a: R e a  _> 1}. 

Note  tha t  a.c.TeaTC~f and a.c.A~,lf have the same form as for 0 < R e a  < 1. In 

order  to get a.c.A~,2f , one should t ransform (4.9). We proceed as follows. 

STEP 1: Let  us prove (4.4). For 0 < ¢ < 1/2, by put t ing  a '  = Re a we have 

(fO 1 f l / 2 e  ) IA~,I(T)I <~ I~-I + I~.(.)1(1 --£8)-(a'+1)/2(£8) 1-(a '+n)/2  
J 1  

× (7- 2 -- 1 + Es)+'/2-1ds 

= Ie,l(T) AI- /~,2(T). 

sup I(A~,2f)(x)l  _< c3c~llf l l l  for some  ~ > 0. 

For 0 < Re a < 1, the equality (4.3) is known in the form (3.22) with 

(4.7) ~ ~ ~ A~,l f  = A~(s)M~s f ds, A~,2f = A~(s)M~sf ds. 
JO J1/2E 

By (4.1), we have (A~,if)(x) = fz~ A~,i(xY)f(y)dy, i =  1,2, where 

(4.8)A~A(T) = IT[ F( (n  + a ) / 2 )  
2 ~ - / 2 F ( a / 2 )  

f 
l /2s 

X /~(S)(1 -- SS)- (a+l) /2(£s) l - (c~+n) /2(T2  -- 1 + £s)~/2-1ds, 
J0 
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It suffices to show tha t  for some 5 > 0, 

(4.10) 
Ie , i ( ' r )  < ( 1 -  T2)l-n/2h(1-- T2~, 

c \ E l 
{@ -1  i f r /_<e,  i = 1 , 2 .  

h(r/) = rl_~_ 1 if ~ > e, 

Indeed, the first inequality in (4.4) then follows by Lemma 1.2. The second one 

is a consequence of the simple estimate 

Ih<~,~ (~)1(1 - ~)ni2-~d~ < 
~ ( f l / 2 s  i 1 / ¢  h(?7)d?~ 

",SO +J1/2e ) ~v/1- ¢z] 

< h(rl)drl + e ~. 

Denote z = (1 -m2) / e  and consider I~,t. If z > 1, then Ie,l(T ) =~ O. In the case 
z _< 1 by (1.11) we have [A~(s)l < s ~'-1 = s ('~+~'-3)/2, and therefore 

I 1 (  )-(a '+1)/2 I~ 1 ~< E -(~'+n+O/2 1 , ds 
' ~ z -~ - s ( s  - z ) "  12-1 sl/2 

e-(~'+_~+,)12 f,t: 1 ) - (~ '+ , ) /2  
- -  Z J 1  ( ~ Z  - -  ~t (~t  - -  1) a ' /2 -1  du ul/2 

( 1 1 ¢ z -  u > l l e z -  l l z  > 112¢z) 

z(<,'-~)l~ f ' l :  ,~<~,12_, du 1 {1 
< e-/2 j ,  ( u - - ,  u~/2 < e n / 2  l + l l o g z l  

_ (1 - T2) ,-----~/( 1 - T2~nl2--1~k. "" } 

< (1- ~/1-~I ~ (1-  ~ ] ~ ,  
C \ "----~i I v~ e (o, n12). 

if a '  > 1, / 

; if a '  -- 1 

Let us est imate Is,2. By (1.11), for some 6 > 0 as above we have 

(4.11) 

[ l i , .  _ 1 I f , - '  1 I~,2 ~ zS+(o~,+n+,)/2 J I M  ('u (~Z -- 'u) -(a'+1)/2 du u~+(~'+n)12 

e-,~12 f l l 2~z  du 1)~_'/2-1 / ( u -  
zS-l-n/2 J1/z uS-t-(a'-l-n)/2 

( use the inequality 1 2~z) ---u:> 
cz 
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If z <  1, then  
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jfl °° 

e--n~2 (U - 1) a ' /2 -1  du 
I~,2 < z~+nl2 I~ tlS+(a,+n)/2 

,-o < g-n12 __ (1 -- m2) ,,~)(1 - m 2 h i2-1 .  

If 1 < z < 1/2E, then 

19 

c -n /2  71 °° ( u - 1 ) ~ ' / 2 - 1 d u  (i-r2) 1-n/2 (~Z~) -~-l. 
IE,2 g z,~+nl 2 - u ~ + ~  = const -E 

In the case z > 1/2c we have I~,2 = 0. Thus  (4.4) is proved. 

STEP 2: Let us check (4.6). It  suffices to show tha t  a.c.A~, 2 ~< ¢~ uniformly in 

a for c~ belonging to a rb i t ra ry  compact  domain  G c {~: Re ~ > 0}. 

We write A¢~,2 = J~c,1 + d~,2, where 

I~-I r((~ + ~)/2) 

(4.12) × i (1-T2/2)/e/~a(s)(1 - ES)-(a+l)/2(Es)l-(a+n)/2(T 2 -- 1 + c8);/2-1d8, 
dll2e 

~,2 = 2 ~ n / 2 F ( a / 2  ) 

f 
x/~ 

(4.13) x ~ ( s ) ( 1  - c s ) - ( ~ + l ) / 2 ( c s ) l - ( ~ + n ) / 2 ( 7  -2 - 1 + e s ) ~ / 2 - 1 d s .  
J ( 1 - ~ / 2 ) / ~  

The  first t e rm is an analyt ic  function of a for Re a > 0, and can be es t imated  as 

follows: 

j ~  < --(c~'+n+l)/2 7" f (1-'r2/2)/c I 

.,., E I [J1/2e I e,l[ (~--S) (a'+l)/2(8IZ)~/2--186q'-(a'+n)/2d8 

w h e r e a ' = R e  a ,  z - - ( 1 - z 2 ) / G  6 > 0 .  If  z K 1 / 2 e ,  i.e. m 2 >  1/2, then  

1--~-2/2 
f _ , , du  I~,,l<dl~-Ia <" ~ (1 u)-(~ + l )12(u-  ez)<~12-1u<~+(<~,+n)l 2 
all2 

f 
1--~-2/2 

' ( u  - 6z)C"12-1du ~ c 5. 
< dl~l-~ Jl12 
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If z > 1/2e, i.e. r 2 < 1/2, then similarly we get 

1-72/2  , 

I ~,11 <~ e~IrI (1 u) -(~ +l)/2(u (1 72)) ~ / 2 - 1 d u  const e ~. 
J l - r 2  

In order  to c o n s t r u c t  a.c.J~, 2 and to est imate it, we use integration by parts.  

A simple calculation yields J a  m-1 ~,2 = Ek=0 Ep+q+r=k ak,p,q,r + Ep+q+~=m bp,q,~,r~, 

ak,p,q,r --~lTI2(k-r)e-P(1 -- 7212)-(~+~)/2-q(I]~+n-P#)( 1 --r_212], 
E / 

bm,p,q,r ~--e-m+~ + l-(~+~) /21rl 

x (1 - es)m-(~+W2(I~_+n-P#)(s) (7~ - 1 + es)~/2-1-rds 
J (1-~/2) /~  sC~+~)l~+q ' 

¢ 1 , 3 , 5 , . . . ;  /7 = ( n + c ~ -  1)/2, m E N. By Lemma 1.3, (I~_+Z-Ptt)(s) = 
O(s-P-~),  s > 1, for some (~ > 0, and therefore lak,p,q,rl < e ~. Similarly for 

c~ ~ = Re ~ < 2m + 1 we get (use the inequalities 72 /2  ~ T 2 -- 1 "Jr- ~8 "~ 72 and 

1 - 72/2 > 1/2) 

Ibm,p,q,~l < e~lTI ~ ' -2m-x f l  (1 - t)m-(~'+x)/2dt 
--r2/2 t (~'+~)/2+m-~+~ < e~" 

The  constant  multiples, which are hidden in these estimates and depend on c~, 

are uniformly bounded for a belonging to an arbi t rary  compact  domain  in the 

strip 0 < Re c~ < 2rn + 1. This provides the validity of (4.3) in this strip with 

the required est imate  (4.6). 

The  s ta tement  (b) was, in fact, proved in Theorem 3.6. | 

Proof of  Theorem A: By Lemma 4.2, the equality (4.3) can be extended to 

f E L p, 1 < p < c~, and f E C. It remains to apply the s tandard  approxima- 

t ion procedure,  which is based on (4.4)-(4.6) and the propert ies of the maximal  

funct ion f*.  II 

For Re c~ > 0 the opera tor  T ~ is well-defined on the space .M of finite Borel 

measures on E,~. Denote  (u, w) = fr~ w(x)du(x), v E 34. In the following we 

deal with "even" measures u E 3,1 only, such tha t  (u,w) = (u(x) ,w(-x) ) ,  w E 
C = C(En) .  For the set of all such measures we keep the same nota t ion 34.  

THEOREM 4.4: Let R e a  > 0, ~o = Tau,  u E 34. I f #  satis/~es (0".11), (0.12), and 

c~,~ is deiqned by (0.14), then 

L ~ t) tl+(,+~_i)/~dt ,w) (4.14) c~,,(u,w) = e-~01im (\ (W,~o)(x, , Vw E C. 
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Proof: Owing to the convolution structure of all operators involved in our con- 

sideration, by Lemma 4.2 we have ( T ~ T ~ , w )  -- ( v , ~ T ~ w )  = (v,A~,lW) + 

(tJ, A~,2w ) --~ ca,~(~,w) as ~ -+ 0. This implies (4.14). | 

THEOREM 4.5 (characterization of the ranges T~(LP), T~(Jk4)): Assume that 

Re a > O, 1 <_ p <_ oo, and # satisfies (0.11), (0.12) with ca,, ~ 0, (see (0.14)). 

(i) For ~ E L p the following statements are equivMent: (a) ~ E T~(LP); 

(b) the integrMs T ~  (see (3.14)) converge in the LP-norm. 

I f  l < p < oa, then (a) and (b) are equivalent to: (c) SUpo<~<l/2 HT~91[p < c~. 

(ii) For ~ E L 1 the following statements are equivalent: (a') ~ E T ~ ( M ) ;  

(b') the sequence f~,. (E~)(x)w(x)dx converges as ¢ -+ 0 for arbitrary w E C. 

I f  ~ = T ~ .  where v(E M )  is nonnegative, then: (c') sup0<~<~/2 [[T~[[~ < oo. 

I f  for ~ E L ~ the relation (e') holds, then ~ E T~(AJ) .  

Proof." (i) The implication (a) ~ (b) follows from Theorem A. The validity 

of " (a )~(c )"  is a consequence of Lemma 4.2. In order to prove "(b)==a(a)" we 

denote 
(L v) 

f - -  c - ~  l ira T ~ .  adz  ~-+0 

Clearly, f is even. Then 

, (Lp) (L p) 

T ~ f  = c~ ~, lim T ~ T ~  = c - 1  lim T ~ " T ~  = ~o 

(here the LP-boundedness of T ~ and Theorem 4.3 have been used). Let us prove 

"'(c):=~(a)". Since the ball in L p is compact in the weak* topology, there exist a 

sequence ¢k --+ 0 and a function fo E L p such that limek_.0(T~qo,¢ ) = ( f0 ,¢)  

for each ¢ E L p'. Since the functions ~ 9 ~  are even, then f0 is also even. Put  
f -1 = c~,~fo. Then 

C--1 c~ ( T ~ f , ¢ )  = ( f , T ~ b )  = lim c 2 ~ ( T ~ , T ~ b )  lim ~,u(T~kT ~ ,¢ )  -- (~ ,¢) ,  
C~--+O ' gk --)'0 

i .e .  ¢p = T~f. 
(ii) The implication (a ' )~ (b ' )  follows from Theorem 4.4. In order to prove 

"(a') ~ (c')" we use Lemma 3.5 according to which [ ( T ~ T ~ ,  f)] = ](v, T ~ T ~ f )  I 

< const]if[]oo][~[]l Vf E C °°. Since v is nonnegative, for f - 1 this relation reads 

I]T~T~][1 < c][v]l where c =- const is independent of E. Let us prove "(b ' ) - - (a ' ) ' .  

Since the space of finite Borel measures on En is weakly complete, then there is a 

finite Borel measure v such that lim~_~0(Tc~o, w) = (~, w). Obviously, v is even. 
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Fur thermore ,  for arbi t rary  infinitely differentiable function ¢,  by Theorem A we 

have 

( T S u ' ¢ )  = ( " T S ¢ )  = ~i~ (T~sg) 'Ts¢) = ~-~olim(T~STS~°'¢) = c s , , ( ~ , ¢ ) .  

This implies ~p a.~. c2,~TC~u" The  proof of the implication "(c')=ee(a')" is similar 

to tha t  of " ( c ) ~ ( a ) " .  | 

5. L P - t h e o r y  ( t h e  case  Re a < 0) 

By Corollary 2.6, the multiplier operator  T ~ is bounded in L p for 

( 1 - n ) / 2 + l l / p - 1 / 2 1 ( n - 1 ) < R e a < 0 ,  l < p < c ~ .  

Below we obtain a direct representat ion of T S f ,  f E L p, and solve the equation 

T S f  = ~ explicitly. Let us s tar t  with the inversion problem. Our considerat ion 

is based on analytic continuation of the equality 

T~ST~f~ ~ =  f_  A~(xy)f(y)dy,  0 < R e  a < l ,  (5.1) 
J l J  

n 

_ r ( ( n  + 

27rn/2F(a/2) 

x f l / ~  (5.2) As(s)(1 - cs)-(s+We(Es)X-(s+n)/2(~-2 - 1 + cs)S/2-1ds, 
J (1-~) /~  

to the domain  Re c~ _< 0 (cf. (4.3), (4.7)-(4.9)), which is possible for , \s(s)  

sufficiently smooth.  If a and n are such tha t  As(s) is not smooth enough, we 

could achieve the required smoothness of As, by put t ing  # = I°t t0 for some 

measure #0 and some 0 > 0 depending on c~ and n (see Remark 3.4). In fact 

the si tuat ion is more complicated because we want to extend (5.1) analytically 

so tha t  the relevant LP-theory will be applicable. 

LEMMA 5.1: Let 1 - n  < R e a  < 0, ~ = [ -  R e a / 2 ]  + t. FixO >__ 0 so that 

(5.3) 0 _> ~ - Re 13 = [ - R e  a /2]  - Re a/2  + (3 - n)/2, 

and pu t  # = I ° # 0  where #0 satislqes the following conditions: 
(a) 

(5.4) o °° sJ d tto ( 8 ) 0 

[Re 13 + 01 
m =  [Re f l + O ] + l  

VA = 0, 1 , . . . , m ;  

if{Re13 + 0} < 1/2, 
i f  {Re 13 + 0} > 1/2; 
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(b) 

// (5.5) s'~dl/Lol(s) < co, 

BLASCHKE-LEVY REPRESENTATIONS 

Re / 3 + 0 + 1 / 2  if{Re / 3 + 0 } < 1 / 2 ,  

T >  Re / 3 + 0 + 1  i f{Re /3+0}>_1/2. 

There exist spherical convolution operators Be~,l, Be~,2 such that 
(i) if f E C °°, 

represented by 

c~ ( ~  . (5.6) %~T~f = B~,II + Be,2f, 

(ii) i f f c L  p, l <_p <_co, then 

B ~ f* (5.7) sup I ~,lf[ <~ , 
O < e < l / 2  

23 

0 < g < 1/2, then the analytic continuation of (5.1) is 

sup light,flip £ Ilfllp, 
O < e < l / 2  

(5.s) 

Proof: 

(5.9) 

sup [(B~af)(x)] • Ca]If lip for some fi > O. 
ac 

We write (5.2) in the form (put 7 -2 - 1 + cs = 7-2r h 7- :fi O) 

A~ (7-)-  F(a/2)l (/l+fl#) ( 1 -  7-2 (1 - e  ~)) (1-7-2(1-r1) )  - ( ~ + n ) / 2 e  

V~/2-1(1 _ ~)-(~+1)/2 
× e(~+,~)/2 &/ 

f )  o o = + ( . . . )  = K L ( 7 - )  = K~,~(7-). 
/2 

o o 

By letting (B~#f)(x) = f ~  K~,~(xy)f(y)dy, i = 1, 2, we get 

o o 

(5.10) T ~ T ~ f =  ~ ~ 0 Re < 1 ,  f c C  ~.  B~,lf + Be,2f , < ee 

Our goal is to extend (5.10) to R e a  < 0 and to estimate the resulting expression. 
o 

The integrand in K~a( r  ) has no singularity for - n  < R e a  < 1 and represents 
r l + / 3 ,  r l + f l + 0  the analytic function of a in this strip. Since 1+ t* = 1+ #0, then, by (5.4) 

and (5.5), due to (1.13) we have (I~+Z#)(s) = O(s -&) for some 50 > 0. This 

yields (we omit simple calculations) 

o 
(5.11) IK~,2(7-)1 < ~*o, 0 < ~ < 1/2, 

uniformly in a belonging to an arbitrarily fixed compact domain in the strip 

- n  < R e a  < 1. In order to handle the first term in (5.9) we use integration 



24 B. RUBIN Isr. J. Math. 

by parts, which gives (up to constant multiples having a nice behaviour in the 
(~-variable) 

(5.12) K~,I E E ~'~ = ak,p,q, r + E ba'ee,p,q,r, 0 < Re a < 1, 
k=O pA-qA-rmk pA-qWr=~ 

a~,p,q,,.(T) = E-P(7-2)p+q(1 -- "r2 /2) -(a+n)/2-q 9~((1 -- 7-2/2)/~), (5.13) 

b ~ , e l ,  (T2) pA-q ~01/29p -- T2(1 -- r])) ) 

(5.14) x r]a/2+e-l(1 -- ?~)-(a+l)/2-rd?~. 

Here g~(s) = (I~+f~-P#)(s) = (II+~+e-'#o)(s),  ~ and 0 are the same as in (5.3). 

We observe that  by (5.3), Re(/3 + 0 - p) > 0 for all p <_ ~. Owing to (5.4) and 

(5.5), by Lemma 1.3 we have 

{ O ( J  '+e-') if s_<l ,  
(5.15) Ig~(s)t = O(s -p-a) if s > 1, Re~, 

{ m i n ( 7 - ~ ' -  O, 1 - { / 3 ' + 0 } )  if {/3' +0} < 1/2, } 
(5.16) 5 =  l + m i n ( 7 - / 3 ' - O - 1 ,  1 - { / 3 ' + 0 } )  if { / 3 ' + 0 } >  1/2 > 1/2. 

By (5.15), ~'~ J lak,p,q,~(T)l <~ uniformly in r E [--1, 1] and 1 - n _< Re(~ < 1. The 
O 

expressions K~,2(T ) and ak,p,q,r(T) constitute the second term in (5.6) for which 

(5.8) is valid. 
Consider be,p,qx. For 1~-I < 1 and ~ fixed, this expression represents the analytic 

function of a at least for max( -n ,  -2g) < Rec~ < 1. In order to estimate be,p,q, ~ 
we denote a '  = Rea ,  A = 1 - ~-2 z = A/E, and use the same scheme as in the 

proof of Lemma 4.2. If z < 1, then 1/2 > E > 1 - 7 2, ~.2 > 1/2, and we proceed 

as follows: 
(r2)p+ q (~-2--(I--e))/T2 [1 /2  

(5.18) be~,'p~,q x - E v+q+(a+~'/2 ( f + ) ( " "  ) Jo J(,~-(1-~))/~ 2 
= Jg + J~. 

By (5.15), 

, ( + r2W~ -(~' +n)12-q+n' +o-~ d 
[J~[ < E-P-q- (" '+n) /2  JO -C ) ?7 

(change the variable: A + T2r] = A/s)  

(5.19) 

jf 
l (1 -- s ) a ' / 2 + t - l d s  

< e - ~ ' - ° A ~ ' + ° + ~ - ' # 2  ~ = r + p + q. 
A/e 8~'+O-t-r-t-1--n/2 
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If A/6 _> 1/2, then for all 60 > 0, 

(5.20) IJgI A - /  -- Tnl-n/2(n~5°-l(c~6°r\7] \ 5 ]  /'~ < - -nl -n/2(A~5°- i  
r~ E \ 7 1  " 

If A/e  < 1/2, a simple estimation of the integral in (5.19) gives the same result 

for some 5o > 0. Similarly by (5.15) we obtain 

(5.21) I.I~I ~ eaA ~-n/2-a sn/2-~+a-t (1 - s)c~'/2+e-lds. 
a2/,/(l+A) 

If A/e  < 1/2, then for r < n/2 + 5 (since 5 > 1/2, this inequality holds for all 

r<_g), 

c 

If 1/2 < A/~ (< 1), then IJ~] <~ A T-n~2 and we proceed as in (5.20). Let 

z = A /c  _> 1. By (5.15), 

cx,e (T2) p+q /1/2 ,a ' i2+e- l (A;_T2")-(c~ '+n)/2-q-P-5 d~ 
[be'v'q'~[ < c p+q+(''+')/2 ao 

(r2)-~-~'/2¢a 
= An/2+a_~ r(r), 

where 

f , ~ / z ~  s) -(~'+~)/2+r-e-a ds. r(r) = s~'/2+e-1(1 + 
Jo 

If A > 1/2, then r(r) <_ fo  2 ( . . . ) ,  and we get 

b a,c ca e,p,q,~ ~< -< e - IAI-~ /2(A/c)  -1-~. 

If A < 1/2, then r(r)  < r(oo) < oc, and therefore 

c~,c ~ sSAr-n/2-6 C-1 Ibe,p,q,~l _< AI-n/2(A/e)  -~-a. 

The second sum in (5.12) gives the first term B~,lf  in (5.6). Moreover, 

(B$,,/)(.) = f ~  Kg,~(zy)f(v)dv where K~,~(r) is a kernel similar to that in 

(4.10). This implies (5.7) and (5.6). | 

Remark 5.2: An examination of the estimates of J~ and b ~# (z > 1) shows e,p,q,r 
that, for Re oe _> (1 - n)/2, it suffices to assume rn = [Re~ + 0], 7 > Re~3 + 0 in 

all situations. 
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THEOREMS 5.3: Let ( 1 - n ) / 2 + [ 1 / p -  1 / 2 [ ( n -  1) ~ R e a  _~ 0, 1 < p < oo. 

Assume that it is the wavelet measure  defined in L e m m a  5.1 (see also R e m a r k  

5.2). 

(i) I f  ~ = T~ f , f 6 L p, where T ~ is the '%P-extension" of the operator (2.4), 

then the inversion formula (0.13) is valid. 

(ii) I f  c~,,  ¢ 0 (see (0.14)), then for ~ C L p the following statements are 

equivalent: (a) ~ E T~(LP); (b) the integrals ~ converge in the LP-norm; 

(c) sup0< <l/2 ll   llp < 

The  proof  is similar to tha t  of Theorems  A and 4.5 (use L e m m a  5.1, Theo rem 

3.6). 

Proof  of  Theorem B: Given f C L p, let { f j }  be a sequence of even 

C°°-funct ions approx imat ing  f in the LP-norm. Denote  ~ = 1 - n - a so tha t  

Re 5< E [1 - n ,  (1 - n ) / 2 ] .  By L e m m a  5.1 (with a replaced by &) and the equali ty 

T ~ T ~ f j  = f j  we get 

oo dt (3.8) (LP) foo dt 
( W f ) ( x , t )  tl_~/2 - .lira I ( W f j ) ( x , t )  tl_~/2 

e 3-~cx)Je 

(L~) T f i T a T  ~ e  (5.6) (LP) a ~ a , l im ~ , = lim [B2IT~ f j  + B~,2T fj] = B~,I T f + B~,2 ~f .  
j --, ~ j -~ oo ' 

Owing to (5.7) and (5.8) the required result then follows in a s t andard  way. | 
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