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ABSTRACT

A family of the spherical fractional integrals T f =vn o fEn lzy|* ! f(y)dy
on the unit sphere &, in R*t! is investigated. This family includes the
spherical Radon transform (@ = 0) and the Blaschke-Levy representation
(a-> 1). Explicit inversion formulas and a characterization of T f are
obtained for f belonging to the spaces C°°,C, LP and for the case when f
is replaced by a finite Borel measure. All admissible n > 2, a € C, and p
are considered. As a tool we use spherical wavelet transforms associated
with T%. Wavelet type representations are obtained for T®f, f € LP, in
the case Rea < 0, provided that T is a linear bounded operator in LP.

0. Introduction
Our investigation is motivated by the following problems: (1) How to define

wavelet transforms on the sphere. (2) How to invert integral operators

(0.1) (qu)(([;) = / |:l?yl‘1f(y)dy, (Rf)(iU) = IZ:—II

Zn {yeTn:zy=0}

f(y)do(y)

and to characterize their ranges, e.g., for f € LP(E,) or f € C(%,). Instead of
f, a finite Borel measure on ¥, can be considered. Different approaches to (1)
can be found in the papers by W. Freeden and U. Windheuser, J. Goettelmann,
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M. Holschneider, P. Schréder and W. Sweldens, B. Torresani; see also [11]. The
integral F' = B, f, where ¢ > 0 is not an even integer, is called the Blaschke-Levy
representation of F' ([1, 8]). Among the authors, who studied this representation,
are A. D. Aleksandrov, R. J. Gardner, P. R. Goodey, H. Groemer, A. Koldobsky,
R. Schneider, W. Weil (for more information see [3, 6]). The inversion formula
for F = B, f was obtained by Koldobsky (6] for ¢ > 0 excluding the cases (a) g
even and (b) ¢ odd, n even. His method employs the Fourier transform on R™*!
(see also the earlier paper by Semyanistyi [16]). The second integral in (0.1) is
known as the spherical Radon transform [5, 12].
We study the more general analytic family

02) (T*Hle) = il,m / el )y, aeC, a 135,

arising in evaluation of the Fourier transform of homogeneous functions [15] (if
Rea < 0, then (0.2) is understood in the sense of analytic continuation; for
a=1,3,..., see [13]). By Corollary 2.6 (see below), T* is bounded in LP(%,),
1 < p < o0, if and only if Rea > (1 —n)/2 + |1/p — 1/2|(n — 1). Let us explain
the connection between the problems (1) and (2). Since T*f = 0 for f odd, in
the following f is assumed to be even. By using the formula

1
(03) / a(zy) f(y)dy = on- / a(r )1 — ™2,
-1

Zn

(1 _ T2)(1—n)/2

(0.4) (M. f)(z) = / F(w)do(y),

Ty=1

€ (_—17 1)7 Op-1= ,Zn—lla

On—

we write T f in the “one-dimensional” form

1
. -11((1 - 0)/2)
ar _ x af2-171 _ \n/2-1 =¢7n1
1o = [ # UMf dine = Py
0

0 <Rea< 1.

Put 7 = ts, then multiply both sides by s7/2 and integrate with respect to an
arbitrary sufficiently nice measure p such that 8o, = f0°° s~/ 2du(s) # 0. After
changing the order of integration we get

05 T =1 [ o= 2 0uule/)/T( - )/2)
0
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1/t
(0.6) Wa)@,t) = onms [ (L= 9"/ M ] ).
0

As we shall see below, (0.5) can be extended analytically to Re a < 0 provided
that u enjoys some cancellation. The integral (0.6) will be called the continuous
wavelet transform of f generated by the wavelet measure 1 and associated with
the operator family {T°}.

By choosing y in a suitable way one can write (0.6) in different forms. For
example, if u is absolutely continuous, i.e. du(s) = w(s)ds, then (0.3) yields
W.f = W[, where

(0.7 W) = ; [ leviuonl/ )y

P2
By putting u(s) = sw(s?), t = 7%, 7 > 0, we get (Wf)(z,72) = (Wof)(z,7)
where

09 Wah)(e,r) = [ ulizyl/n) sy
Zn

The wavelet transform (0.8) was introduced in [12]. If

i(—l)k(f;)dk, (€N,

(0.9) p=
k=0

where 8 = é(s) is the unit Dirac mass at the point s = k, then (0.6) reads

£
(0.10) Wuf)(@,t) = 0n1 y (-1)F (,‘;) (1 — kt)} > (M ) (2).
k=0

More general discrete measures (see [11], Sections 10.1, 10.2) can be also used.

Some comments are in order. The “usual” wavelet transform f — (f * g:)(z)
on R", generated by the scaled version g; of a radial wavelet function/measure
g, can be “discovered”, as above, starting from Riesz potentials (I*f)(z) =
Cnya Jgn 12—9|*"™ f(y)dy, and using the generalization of Marchaud’s method [11,
p. 169]. These transforms provide a localization at a point (in accordance with
the point singularity of the kernel of I*f). Similar spherical wavelet transforms
(with a point localization) were introduced in [11]. In our case, which is typical
for the integral geometrical setting, the localization is achieved in a neighborhood
of a “big circle” representing the set of singularities of the kernel |zy[*~!. Our
“wavelet transform” is just a tool, which enables us to build analytic continuation
of T f for Re & < 0 in a “nice” form (see [14] for further examples).
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THEOREM A (inversion of T%): Let Rea > 0, a # 1,3,5,. 8 =
(n+ a —1)/2. Assumne that u is a finite Borel measure on [0, 00) such that
(0.11) /sjdu(s) =0 forallj=0,1,...,[Ref],
0
(0.12) /s’d]u](s) < oo for somey > Ref.
0

() Ife=T*f, fe L?, 1< p< oo, then

o0 o0}
dt . dt
©0.13) [ Wa0)@,0)srreramrrs = lim, [ W) o) srriamirs = o @
0 £

(L*)  a.e.
where lim = lim = lim and ¢, , is defined by

/ I'(=p) / sPdu(s) if B#0,1,2,...,
n/2
(0.14) cap= = 0

T((n + a)/2) (—1)8+1

3 / Blogs du(s) otherwise.

(€)
(ii) If f € C, then (0.13) holds with lim = lim.
Example: Consider the integral equation fEn |zy| f (y)dy = ¢{x) with the cosine
transform in the left-hand side [3, p. 379]. By Theorem A (for a = 2), f(z) =
it JoT (W) (z, t)dt/t+3)/2, provided that

m(=1)"/* / (n+1)/2 .
TEsn Yo du(s) if n is even,
oqn=1/2 I‘((n+3)/2)0
Cy = —m
YUTA+n/2)) Ly % o o
((n+1)/2)! / 8 log sdp(s) if n is odd,
0

¢, # 0, and p satisfies (0.11)-(0.12) with 8 = (n +1)/2.
Qur next result concerns the wavelet representation of T f, f € LP, in the
case Rea < 0, when (0.2) fails, but T* is still bounded in LP. Assume that
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(W f)(z,t) is the wavelet transform (0.7) with w represented by the fractional
integral w(s) = (I{uo)(s) = (1/T(0)) 5 (s — 1) *duo(t), 6 >0, where pg is a
finite Borel measure. Let

/s]duo )=0 Vj=0,1,...,m

0
_ [ [-Rea/2+6 if {-Rea/2+ 60} <1/2,
B { [-Rea/2+6]+1 if {-Rea/2+6}>1/2;
[ Sdnol(s) <0
0
—Re a/2+60+1/2 if {—~Rea/2+60} <1/2,

for >
orsomen {—Rea/2+9+1 if {— Rea/2+ 0} > 1/2;

o0

r(a/2)/s-a/zw(s)ds if —a/2+#£0,1,2,...,
Aoy = ﬂ 0
I (e i |
(—a/2)! / s w(s)logs ds otherwise.
0

THEOREM B: Let (1 —n)/2+|1/p—1/2[(n-1) < Rea < 0,1 < p < oo,
6 >1+Rea/2+|[(Rea+n—-1)/2]. Ifd, , #0, then for f € LP,

s | Ve

[e=}

dt In the LP-norm and a.e.

1 7(Wf)(w,t)

tl—a/2

COROLLARY C (representation of the spherical Radon transform; cf. [12, Th.
1.2]): Let = 1+ [(n —1)/2]. Assume that w(s) is a § — 1 times continuously
differentiable function on [0,00) such that w®=1)(s) is absolutely continuous on
[0,00). Moreover, let

(a) w(k)(O) =0, w(k)(s) =o(sFVass—so00; k=0,1,...,0 —1;

(b) fy~ w(s)ds =

) [° s7|w(9 (s )|ds < oo for some’y >041/2;

(d) stnw = 27"2/T(n/2)) f;° w(s)log(1/s)ds # 0.
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Then for f € LP, 1 < p < 00, (Rf)(z) = limeo 3, %, [7°(W f)(z, t)dt/t in the
LP-norm and a.e.

The paper is organized as follows. Sections 1 and 2 contain preliminaries
and basic properties of (0.2). Section 3 is devoted to relations which link up
wavelet transforms with T*f, f € C*. In Section 4 we prove Theorem A and
characterize the range of 7%, Rea > 0, on functions f belonging to L?,C, and
on finite Borel measures. Apart from Theorem A, the main results are stated
in Theorems 4.4 and 4.5. Section 5 contains the proof of Theorem B and an
analogue of Theorem A for Rea < 0.

ACKNOWLEDGEMENT: The author is grateful to the referee for valuable remarks
improving the original text of the paper.

1. Preliminaries
Notation: ¥, is the unit sphere in R"*!, n > 2;
On = |Zn] = 200 D/2)2((n + 1)/2).

We denote by {Yj(z)}, = € £,, the orthonormal basis of spherical harmonics
on ¥, Herej € Z, = {0,1,2,...}; k = 1,2,...,dn(j) where d,(j) is the
dimension of the subspace of spherical harmonics of degree j. The notation
I? = [P(%,), C = C(E,), C* = C>®(%,) is standard. The Fourier-Laplace
decomposition of f € C™ is written as f = 3, | f;xYjx (for more information
about analysis on 3, see [11, 15] and references therein). Apart from the Jacobi

polynomials Pj(a’ﬂ )(r) and the Gegenbauer polynomials C’J(-"_l)/ %(r), we will use

(1.1) Hy(r) = (TG +1) D(n — 1)/T(G +n - 1)) C D23 (7).

The following relations hold [2]:

12) |H;(T)| <1, H;(1)=1,
(2 D(G+ 1)/ T(/2) .
H; 0) = wl/2 T((j + n)/2) for 7 even,
0 for j odd.

The Funk-Hecke formula (2] reads

1
(1.3) / a(zy)Y;(y)dy = XYj(x), A =01 / a(r)(1 - 72)"/2_1Hj(7)d'r,

-1

n
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where Y; is a spherical harmonic of degree j and zy is the usual inner product.

In the following [a] designates the integer part of a € R;{a} = a — [a] €
[0,1); a4 = max{a;0); Ry = [0,00). The abbreviations “<” and “=~” indicate
“<” and “=" if the latter hold up to a constant multiple.

LEMMA 1.1: The mean value operator (0.4) enjoys the following properties:

(a)

(1.4) sEup )IIMrfIIp <|fllp, feLP,1<p< o
T€(—1,1

(b) For a spherical harmonic Yj(z) of degree j,
(1.5) (M:Y;)(z) = H;(7)Y;(z).

(¢) If f € C®(Zy), then (M. f)(z) € C*([-1,1]) in the T-variable for each
x € Xy,. If, moreover, f is even, then (M. f)(z) is an infinitely differentiable
function of 72.

The statements (a) and (b) are known. The first statement in (c) follows from
(M, £)(@) = X, Hs (1) 1 Y36(2) because [¥;4(2)] = o(21), f = ol5~™),
j — oo, for all m > 0. The second statement in (c) is clear, since f;, = 0 for j
odd, and H;(7) with j even is a polynomial of 72.

The next statement concerns spherical convolutions of the form

(1.6) (K.f)(z) = / ke (2y) £ (v)d,
(1 _ TZ)]-—n/Q 1 — 72
ke(r) = - k( . ), e > 0.

LEMMA 1.2 ([12]): Let f be an even measurable function on ¥, (K*f)(z) =
SUP.wo |(Ke f){(x)|. If k(s) has a decreasing integrable majorant, then K* f < f*,
where

1

(1L7) f(x)= sup —— [f(Wldy, o-(z)={y€Zn:ay>T}
re(—1,1) IUT(:E) or(z)

We will need the Riemann-Liouville fractional integrals [11]
(1.8)

s 1
(1¢u><s>=f(17) /0 (s — P 1), (1%_¢><r>=r—(&—) / (t — )i (r)de.

Here Re A > 0, v is a Borel measure on R, , 9(7) is a function on (—1,1).
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LEMMA 1.3: Let N =ReA >0,k € Z,

o N4k
(1.9) / sidu(s) = 0 forallj-—-O,l,...,m:{[ J+k A E Ly,
0

A otherwise,
(1.10) / s7d|v|(s) < oo for some y > N + k.
1
Then
(i)
(1.1
b\ ,
(I_}:F/\I/)(S):{O(S ) 5 ‘ 1f0<3<1,
O(s7% %), s =min(y — XN —k,1 - {N\'}), ifs>1,
(if)
- J A)/ s*dv(s) if ¢ Zy,
(1.12) / (I}r+’\u)(3)?s ={ i
0 ‘ ——/ s*logs dv(s) ifA€Z,.
Al 0
Proof: (i) We have (Ii"’)‘y)(s) = S/2+fs/2 = g(s) + h(s) where, by

(1.10), |A(s)] £ sV :/2 dlv|(t) £ s)‘ - = gmh=( N k). In order to estimate
g(s), let

(1.13)
gr—i (_1)m+1 t

s—t =
t—n)M(s — )\—m—ld
Th+1) ]2: g Fz\+1—])+m!1“(/\—-m) 0( (s =) K

(for A € Z, the integral term disappears). Then g(s) = Z?jﬁ c;jg;(8),
sz
i) =50 [ wdule), 5= 1, m
0

s/2 t
QHNQ=A dwwﬁu—mmw—m*m*m,

¢j (j = 0,1,...,m + 1) being the corresponding coefficients. For j < m the
relations (1.9) and (1.10) yield |g;(s)| = és’\'_j|fs°/°2 tidv(t)] < s*' 7. The term
gm+1(s) can be estimated by making use of the formulae 2.12(1) and 2.9(3)
from {2]:

, s/2
1.14 Gma1(s)] <Ml P (m + 1= X, 1;m+ 2;t/s) d|v|(t).
+ ~ O
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If A’ > 0, then according to 2.8(46) from [2],

) 1/2 s/2
(1.15) () S ([ [ )i
0 1/2

(1.10)
< s/\ —min(y,m+1) __ =3 —A=4

7

d=min(y—- N —k,1-{N})€e If N =0, then (1.14) yields

0,1].
/ tm+1d] I / Ui dTI
o $—n
m+1 —k-—8
S [ a0 55

(cf. (1.15)). The second relation in (1.11) is proved. The first one is obvious.
(ii) Let us prove (1.12). By (1.11), (I}t )( )/s € LY(R,). Hence it suffices
to find the limit Jy = limgo JJ(¢) where J(t fo et IH'\ )(s)ds/s.
changing the order of integration and usmg the formula f e (s —u)ds/s =
WA+ 1) [ ey~ dn [4], we get J(t) = [T dv/v*? [ e dy(u), Jo =
I dv/v [° e7wdy(u). By (1.9),

gmi1(3)] S

= 7
o0 o0 m
- (—wv)?1 dv
= dy(u)/ [e "o ] ,
and integration by parts leads to (1.14). |

2. Basic properties of the spherical fractional integrals
Assume that T f and Rf are defined by (0.2) and (0.1) respectively.
LEMMA 2.1: Let Rea > 0. For a spherical harmonic Y;{(z) of degree j,
(2.1)

(TY;)(2) = ¢;,aYj(2), Cja = {

—1)i/? P@/2+(1-a)/2)
TG/2+ (n+a)/2)
0 if 7 is odd.
Proof:  For j even the result follows from (1.3), (1.1}, and the formula 2.21.2(5)
from [10]. If j is odd, then (2.1) is obvious. 1
For Rea > 0, T“ is bounded in L?, 1 < p < c0. By (1.2), (0.3}, and (2.1),

(2.2) R =My =x"Y?1(n/2) T°.

if j is even,

Hence, by (1.4), all operators in (2.2) are bounded in L?, 1 < p < co.
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LEMMA 2.2: If f € C®°(2,), then T®f can be extended to all a € C as a
meromorphic function of a with simple poles at the pointsa = 1,3,5,....

Proof: Let f = [+ + f~, f(z) = (f(x)  f(~2))/2. Then T®f = T f+ =
Tr,aOn—1 f_ll [t|*~1(1 - t2)*/2~1 M, ftdt. Hence

1
T "/20 1{(1 - a)/2)
9. o f n— af2— 1 n/2 1 +
(2.3) T*f T(a/2) / M s fTdr,
0
Rea € (0,1),
and the result becomes clear due to Lemma 1.1 (c). |

In the following the notation T'* will also be used for Rea < 0. Thus,

(24) (T°f)@) = ciafirYirl@), fEC®, a€C (x#1,35,...),
ik

i = (—1)72T(j/2+ (1 — @)/2)/T(j/2 + (n + a)/2) for j even and ¢; o = 0 for
j odd.

LEMMA 2.3: Ifa ¢ {1,3,5,...}, then T®: C*® — CZ,, is a linear continuous

map. Ifa ¢ {1,3,5,... }U{—n,—n—2,—n—4,...}, then T is an automorphism
of C, and

even
(2.5) (T*)~' =1

This statement follows immediately from (2.4) because ¢; o = O(j(}~7~22)/2)
as j — o0.

For Rea < 0, the behaviour of 7¢f, f € LP, is rather delicate. In order to
make it clear we consider the more general operator family defined on f € C™®
by

(2.6) (A*f) Z ;7 ﬁi ;;2; fixYik(x), o€Ca#1,3,5,...

(see [15]). The latter coincides with T*f for f even. Given v € R and p €
(1,00), let L) = L}(%,) be the Sobolev space, which consists of distributions
with the property: for each f € L} there is a function f e LP such that
fh) = (j + 1) f;x for all Fourier-Laplace coefficients. We put || f||.y = 1F -
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THEOREM 2.4: Let 1 <p<oo, a€C, a#1,3,5,....
(i) The operator (2.4) can be extended as a linear bounded operator, acting
from L_g into L] provided

(2.7 ReaZv—ﬂ—n—;—lﬁ-‘%—%{(n—l).

(i) If (2.7) fails, then there is an even function fy € Lg such that T*fo ¢ L;.

Proof: Let f = ft+ f~, ft(z) = (f(z) + f(~x))/2. Then T®f = Tf* =
A ft, ||f+||L€ < Ifllpe- The estimate || A*f|z; < [Ifll s is equivalent to
1A flizs S fllps 6 = —B—Re a+1. This can be easily checked by using the
Strichartz multiplier theorem [17). The above estimate of A f holds if and only
if (2.7} is satisfied [7]. In order to prove (ii) it suffices to reproduce the argument
from [7, Section 5] for the function fo(z) = (I — Ag) P/2[Fe(Zny1) + Fo(—Zny1)]
where Ay is the Beltrami-Laplace operator on 3, and F; is defined by the
equality (52) (or (54)) from [7]. |

By making use of the argument from [7, 9] it is not difficult to obtain sharp
conditions under which 7 is bounded from Lg into L7 with ¢ > p.

Denote by Ltven and L} even the spaces of even functions (or distributions),
belonging to L” and L} respectively, with usual norms.

COROLLARY 2.5: Lf,,even C T*(LEven) C Ly even, provided

-1 1 1 -1 1 1
(2.8) vy=Re at s —’ = ‘

5 5——(n—1), §=Re a+——+

aé¢{1,3,5,...}u{-n,—n—-2,-n—4,... }

The right embedding follows from Theorem 2.4 with 8 = 0. If f € Lg,even,
then f = ToT!~"~%f where T'"~%f € LP (use Theorem 2.4 with # = 6 and
v =0).

By Corollary 2.5 and Theorem 2.4, it is impossible to characterize T*(L?) in
terms of the Sobolev spaces for p # 2. We will do this later with the aid of

wavelet transforms.

COROLLARY 2.6: For1 < p < oo, Rea <0, T* is bounded in LP if and only if

1- 1
(2.9) Rea > ® 4 l =
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3. Spherical wavelet transforms and auxiliary relations for
C°-functions

Since T f = 0 for f odd, in the following we deal with even functions f only and
write C™ instead of C,, (similarly for L? and other spaces). It is convenient
to deal with wavelet transforms of the form (0.6).

LEMMA 3.1: Let fe LP,1<p<oo,n>2.
(i) If p is a finite Borel measure on Ry, then

(3.1) IWufllp < 202271 £l (2 u) (1/8) < 202l 1161l

where ||p| Is the total variation of |p|.

(ii) If du(s) = w(s)ds and w = Ii,uo, 8 > 0, for some finite Borel measure py,
then

n/2n/2— n 6 n _
(32) Wty < 2n 26271 Fllo (172 o) (1/8) < 207726 o] [ £1-

Proof: By (1.4), from (0.6) we have

(3.3) W fllp < crn_lllfllp/ol/t(l — ts)™* 7 d|u|(s)
= 222 (1 P ) (1)
which gives (3.1). The statement (ii) is a consequence of (3.3). |
Due to (0.5) and (2.5), one can expect

B J=c| WINENEG S=@ra- 1/,

for suitable y and ¢ = ¢(a, 1). The precise sense to (3.4) will be given later. Now
we start with some preparations. Consider the operator family

(3.5) (M? f)(z Zu t)f;xYik(),
(3.6)
W(t) = I'((n+a)/2) T(1+ 3/2)( gy (et)/2 PJg§;+a)/2—1,—(a+1)/2)(1 o),

T+ n+a)/2)

assuming f € C®,0<¢t <1, —n < Rea < 1. We recall that f is even.
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LEMMA 3.2: (i) For each compact set K in the strip —n < Rea < 1 and f € C™,
there is a constant Ck ¢ such that

(3.7) sup |(M7 f)(2)| < Cr,s(1 = )" RtV vae K.
(if)
(3.8) }%(Mf‘f)(a:) = f(z) uniformly on %,.

Proof: Owing to the formula 2.22.2(2) from [10], we have

pln+ta)/2=1,—(a+1)/2) (s) = (s + 1)(a+1)/2
o Blo —(a+1)/2,1 -0 +3/2)

X / (r+1)77(s— T)U_1_(a+1)/2Pj(72+(n—3)/2’_0)(T)dT

-1

for each o such that 1 > o > (Rea+1)/2. If 0 > (3 — n)/4, then [2, 10.18(12)]

(0+(n—3)/2,~0) _f{o+(n-5+j)/2
69 _max 1P o= (73T,

and therefore (one can assume o # (mod 1))

IP;§;+Q)/2_1'_(Q+1)/2) (S)] < Con

T((1-a+35)/2)T(c+(n-3 +j)/2)‘
T(1-0+435/2) T(1+j/2) ’

I'(1—o0) (o - (Re a+1)/2)
IT(c — (@ +1)/2)| T((1 - Rea)/2) I'(¢ + (n — 3)/2)
Due to the properties of I'-functions [11, p. 390] it follows that for each compact
set K in the strip —n < Re a < 1 there exists a constant Cx such that

Co,a

(3.10) [ug ()] < Ckj~Ree(1—¢)~(ReatD/2 yq ¢ K.

This implies (i). The second statement is clear, because u${0) = 1 (see [2,
10.8(3))). |

LEMMA 3.3: Let fe C®, 1-n<Rea<l, f=(n+a—1)/2,n>2. Then

I((n+a)/2)

(3.11) T

(L=t M 5T f = (IF_ Mg )(), t € [0,1),
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where M ,; and If_ are defined by (0.4) and (1.8) respectively.

Proof: It suffices to prove (3.11) for spherical harmonics f = Y; of even degree
J. By (1.5), (2.4) and (3.5), the equality (3.11) reads

I'((n+«)/2)

(312)  a—g 72

(1= )2 H (V) = (F_uf)(s), 0<s<1.

Owing to the formulae 3.15.1(5) and 10.8(16) from [2], we have

U promy = EVPPA45/2) p-1/2m2-1)

(1-2s).

Thus, the left-hand side of (3.12) has the form

2L +5/2) T((n + a)/2)
I((7 +n)/2)

By [10, 2.22.2(2)] this coincides with the right-hand side of (3.12). |

cia(=1) (1= syn/2=2pG YA (1 - 2),

Now we pass to justification of the inversion formula (3.4) for f € C*. Denote

61 (A= [ Wi f=nra-1),

and assume (0.11) and (0.12) for 1 —n < Rea < 1. In the case Rea=1—-n we
suppose

(3.15) du(s) = w(s)ds, w=1%u, for some 8§ >0,
(3.16) / sdug(s) =0 forallj=0,1,...,[Re B+6],
0
(3.17) / s7d|uo|(s) < 0o for some vy > Re G +6.
0

Remark 3.4: For short, sometimes we write p = Iiuo in both cases. If 8 = 0,
it means that p = pg, and for # > 0 this equality is understood as (3.15). In
particular, one can assume 6 to be an integer and w(s) to be such that w(0) =
w'(0) = - -+ = w1 (0) = 0 with w(® (s) satisfying (3.16), (3.17).

By Lemma 3.1, for ¢ € LP, p € [1, 0], we have

(3.18) 1T20llp < ce ™ Cllgll,, B =Re B, 6>0.
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LEMMA 3.5: Let fe C®, 1-n<Rea<l,n>2, = (n+a—1)/2. Assume
that p is chosen according to (0.11)-(0.12) and (3.15)—(3.17). Then

1/5 71'"/2 L
(3.19)  TeTef - / M fds, Aa(S):m(lﬁﬁu)(S),
(3.20) do € LR, [ Aal5)ds = o
0

where ¢, ,, Is defined by (0.14).

Proof: Let first 1 —n < Rea < 1. The relations (0.6) and (3.11) yield

g7/ 2408 1/t
T((n +a)/2) /0 (I ) () MG f dt.

Indeed, by putting g(r) = M2 f we have

(321)  (W.If)(t) =

g _ /2 1/t 1-ty 51
W1 = M{{(n +a)/2) T(B) / du(s / glts +7)dr
oy 1t v
T T((n + @)/2) T(8) /0 dyu(s) / (€ — )P g(te) dé

7{”/2 B 1/t
- F((szat)”/T) / 9(t8) (15 ) (€)de.

We note that I? o041 € LY(R;) (see Corollary 4.13' from [11]). Furthermore,

n/2 1 w u/e 1/e
TS = ey [, 90 [ = [ a9 xalo) ds.

U

The change of the order of integration can be justified by using (3.7). The
relations (3.20) and (0.14) are implied by Lemma 1.3. The validity of (3.19)
for Re @ = 1 — n follows by analytic continuation (use Lemma 3.1 and Lemma
3.2(1)). fw= IfL;LO, then, owing to (3.16) and (3.17), by Corollary 4.13' from
(11] we have [~ w(s)ds = 0, and [ s”|w(s)|ds < oo for some y > 0. By Lemma
1.3 these yield (3.20) and (0.14). 1

THEOREM 3.6: If u satisfies (0.11)—(0.12) and (3.15)—(3.17), then for each
T € Xy,

H * le3 dt o0
Elgr(l)/a w,T f)(x,t)m:ca#f(w), feC® 1-n<Reac<l,
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where ¢, ,, is the constant (0.14).

Proof: One has to check the equality lime0 T°T* f = ¢q,uf- Due to (3.19),

1/2e 1/5
(322)  TeTf= / / M2f ds = A%, f + A%, .

1/2¢

By (3.7), (3.8) and (3.20), we get lim._,0 AYf = ca,,f- The term AZ,f tends
to 0, because by (1.13) and (3.7), |A%,f| < fl//;e 1 — gs)(@HD/2g=0-14¢ —
O, 6§ >0, o/ =Re a. ]

4. LP-theory (the case Rea > 0)

LEMMA 4.1 (an integral representation of (3.5)): Let Rea > 0, f € C*. Then

(41) (M2 f)(z) = / K (zy) f(v)dy,

T((n+ a)/2) _ _ . 21
1 — )y~ (et /2—(atn)/2 1 _ 2yo/2-1
2nn /2T (ay2) ) 7l =174

Proof: According to the Funk-Hecke formula (1.3) it suffices to show that

(4.2) k()=

O'n—lr((n + a)/2) (1 _ t)—(a+l)/2tl—(a+n)/2
221 (o) 2)

x /1 |t = 1+ 725271 — P H (7)dr = ()

-1

(see (3.6)). Put 72 = s, 1 —t = u. Then the above relation can be checked by
using (3.13) and the formula 2.22.2(7) from [10]. |

By analyticity, (3.19) can be extended to all Rea > 0 (a # 1,3,5,...). Below
we construct this analytic continuation and show its convergence as € — 0.

LEMMA 4.2: Let Rea >0, o # 1,3,5,.... Assume that f € C* and p satisfies
(0.11), (0.12). Then there exist sphenca] convolution operators AZ; and AZ,
such that

(4.3) TETf = A2, f + AZ,f, 0<e<1/2,

and the following assertions hold:
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(a)

(44) sup |AZ f|<ef, [AZ1fllp Seollfllp VP E[L,00],
O<e<1/2

where f* is the maximal function (1.7) and ¢ is independent of .
(b) For each spherical harmonic Y; of even degree j,

(4.5) Eh_r:(l) AZ1Y; = €auY;, Ca,u being defined by (0.14).
(c)
(4.6) sup [(A2,£)(z)] < cse®||flls  for some & > 0.

Proof: For 0 < Rea < 1, the equality (4.3) is known in the form (3.22) with
1/26 1/e
4.7 A f = / MZf ds, AZof = // MZf ds.
2e

By (4.1), we have (A2, f)(z) = 5, AZ(zy)f(y)dy, i = 1,2, where

(4.8)A2 () :%

1/2¢
x/ )\a(s)(l—53)—(a+1)/2(63)1—(a+n)/2( 1+£s)°‘/2 1ds,
0

7] L(n + ) /2)

4 Ao () = AT (a/2)

1/e
* / /\a(S)(l - 53)“(0“"1)/2(Es)l—(a+n)/2(7_ 1+ ES)O‘/2 lds.
1/2¢

We regard (4.3) as the analytic continuation (a.c.) of (3.22) to {a: Rea > 1}.
Note that a.c.7*T*f and a.c.Ag; f have the same form as for 0 < Rea < 1. In
order to get a.c.AZ, f, one should transform (4.9). We proceed as follows.

STEP 1: Let us prove (4.4}. For 0 < € < 1/2, by putting &’ = Re « we have

1 1/2¢ - )
A (DI S Irl( /O + /1 )l)\a(s)|(1—es)‘(°‘+ )12 (g )1~ (e +n)/2

x{(r? -1+ ss)i’/z_lds
= IE,I(T) + Ie,?(T)'
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It suffices to show that for some é§ > 0,
(4.10)

I.i(1) < i=1,2.

—é—1

(1—T2)1‘”/2h(1—72 |
i ifn> ¢,

=t ifp<e,
£

), hin) =

£

Indeed, the first inequality in (4.4) then follows by Lemma 1.2. The second one

is a consequence of the simple estimate
1 1 2
1 1-
[ s = royetar s 2 [ n(=E )dT
-1
1/2¢ 1/6
/ //26 V 1 —£&n

5/0 h(n)dn + €°.

Denote z = (1 —72)/e and consider I ;. If z > 1, then I, 1(7) = 0. In the case
z < 1by (1.11) we have [Aq(s)] < s#'~1 = s(m+'=3)/2 and therefore

1 ’
: 1 —(e'+1)/2 ds
I, Se o +n+1)/2/ (E _ S) (s — 2)@ /21 7

~(@+nt1)/2 pi/z —(e'+1)/2 , d
:E____/ (& ~u) (u— 1) /21 2
z 1 £z ul/2

(1/ez —u>1/ez — 1/2 > 1/22)

- L(a'=1)/2 /l/z( e o' j2—1 du < L 1 {1 if o/ > 1,
~en/2 ) “- w2~ en/2 | 1+ |logz| ifa/ =1
_ (1 _ T?)I—n/Q 1— 7.2 n/2—-1
- - ( - )}

1 __7.2)1-11./2 1 _T2 §—1
<! - ( - )" vee(on/2).

Let us estimate I, . By (1.11), for some ¢ > 0 as above we have

(4.11)

I,

E_(a’+n+1)/2 1/2ez o ja-1( 1 —(a’+1)/2 du
[y
£z

< - N ——
2~ 5t (ol +nt1)/2 1z b+ +n)/2

6—-71,/2 1/2sz a'/2—1 du
NW/I/Z w-13" Swrn

u
us
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If 2 <1, then

—n/2 o] d

£ ’ U

< _\e'fe—-1_ %%

lea S /l/z(“ VT
<E—n/2 B (1_T2)1vn/2 (1 __7_2)”/2_1
~ N € € ’

If1 < 2 < 1/2¢, then

e /2 oo (u _ 1)&'/2—ldu (1 _ 7_‘2)1—71/2 1 — 72\ —6-1
L / udt ( ) ’

< = T,
25 5tn/2 (o tn)/2 const z .

In the case z > 1/2¢ we have I, = 0. Thus {4.4) is proved.

STEP 2: Let us check (4.6). It suffices to show that a.c.A%, < &° uniformly in
« for a belonging to arbitrary compact domain G C {a: Rea > 0}.
We write AZ, = J2y + Jy, where

o _|TIT{(n+a)/2)
17 9gn/20(a/2)

(1-72/2)/e 91
(4.12) x/ )\a(s)(l—as)"("+1)/2(53)1“(“+”)/2(T2—1+€s)i/ “ds,
1/2¢
e I T((n+a)/2)

&2 oxn/20(a/2)

l/€
(4.13) x / Aa(8)(1 = es)@FV/2(gg)l=latn)/2(12 _ 1 4 g5)2/2-1gs,
(1—72/2)/¢e

The first term is an analytic function of & for Rea > 0, and can be estimated as
follows:

(a-r*/2)/e 4 —(a/+1)/2 d
o —(o"+n+1)/2 - _ a'f2- 1_—8-
Ue,ll Sete |7] e (5 S) (s Z)+ sot(a+n)/2

where o/ =Re «, 2= (1—-72)/e, 6§ >0. If 2<1/2¢, ie. 72>1/2, then

1—72
ey du
1|<56m[ W) IR e) P

2/2
< 56|T|_a / (u—ez)* /2=y < el
1/2
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If 2> 1/2¢, ie 7% <1/2, then similarly we get

1-7%/2
el S e|r| (1 —u)~@+D/2(y — (1 — 72))*/2"1dy = const &°.
1—72

In order to construct a.c.J&; and to estimate it, we use integration by parts.

. . . a _ sm—1
A simple calculation yields J&y = ) .~ Ep +q+r=k Ck,pqr T Zp ftr=m bp.g.r.m»

—T) —(a — - 1 "7'2 2
Ak pg,r 2T ETITP(1 = r2j2) (a2 (HF pﬂ)(—%),

Buny o 2E—m+r+l—(a+n)/2|7_|

1

1/e (72 — 1 + es)*/2-177(s
1— m—(a+1)/2 Il+ﬁ—P
" /@_,2/2)/5( ) L ) = awmra

a#1,35...;8=m+a—-1)/2, m € N By Lemma 1.3, (If“'@_”u)(s) =
O(s7P~®%), s > 1, for some § > 0, and therefore |ak p .| < €°. Similarly for
o =Re o < 2m + 1 we get (use the inequalities 72/2 < 72 — 1 + s < 72 and
1-172/2>1/2)

1 (1 — t)m—(a,+l)/2dt
tlo'+n)/2+m—r+ds

€.

I_ pa—
b, pa.rl S €6|T|a am 1/
1-12/2

The constant multiples, which are hidden in these estimates and depend on a,
are uniformly bounded for a belonging to an arbitrary compact domain in the
strip 0 < Re a < 2m + 1. This provides the validity of (4.3) in this strip with
the required estimate (4.6).

The statement (b) was, in fact, proved in Theorem 3.6. ]

Proof of Theorem A: By Lemma 4.2, the equality (4.3) can be extended to
feLP, 1 <p<oo, and f € C. It remains to apply the standard approxima-
tion procedure, which is based on (4.4)-(4.6) and the properties of the maximal
function f*. ]

For Rea > 0 the operator T* is well-defined on the space M of finite Borel
measures on L,. Denote (v,w) = fEn w(z)dv(z), v € M. In the following we
deal with “even” measures v € M only, such that (v,w) = (¥(z),w(~2)), w €
C = C(%,). For the set of all such measures we keep the same notation M.

THEOREM 4.4: Let Rea > 0, ¢ = T*v, v € M. If u satisfies (0011), (0.12), and
Ca,p Is defined by (0.14), then

. *° dt
(414) Ca,”’(lj, w) = ;I_I)I(l) (/E (Wy(p)(l’, t)m,&)) , Yw S C
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Proof: Owing to the convolution structure of all operators involved in our con-
sideration, by Lemma 4.2 we have (T*Tv,w) = (v, T*Tw) = (v, A2 w) +
(v, A2 pw) = o (v, w) as € = 0. This implies (4.14). n

THEOREM 4.5 (characterization of the ranges T*(L?), T*(M)): Assume that
Re a>0,1<p < oo, and p satisfies (0.11), (0.12) with cq,, # 0, (see (0.14)).
(i) For ¢ € LP the following statements are equivalent: (a) ¢ € T*(LP);
(b) the integrals Ty (see (3.14)) converge in the LP-norm.
If1 < p < oo, then (a) and (b) are equivalent to: (c) supgce<12 |7l < 00.
(ii) For ¢ € L' the following statements are equivalent: (a') ¢ € T*(M);
(b’) the sequence fzn(ﬁ"‘(p)(:z)w(m)dx converges as € — 0 for arbitrary w € C.
If p = T*v where v(€ M) is nonnegative, then: (c') supg .12 |Tll1 < co.
If for ¢ € L! the relation (c') holds, then ¢ € T*(M).

Proof: (i) The implication (a) = (b) follows from Theorem A. The validity
of “(a)=(c)” is a consequence of Lemma 4.2. In order to prove “(b)=(a)” we
denote

Clearly, f is even. Then
o] -1 ({Jp) [0 7 u*] —1 ({/p) arpa
Tof = cap IMTT %y = ¢, I T3 T%0 = ¢

(here the LP-boundedness of T and Theorem 4.3 have been used). Let us prove
“(c)=(a)”. Since the ball in L? is compact in the weak* topology, there exist a
sequence € — 0 and a function fo € LP such that lim., o(750, %) = (fo,%)
for each ¢ € LP'. Since the functions TS ¢ are even, then fy is also even. Put
f= c;,lu fo. Then

(Tf,9) = (£, T%) = im ¢, (TS0, T9) = lim L (TST%0, ) = (#,90),
ie. p=T>f.

(ii) The implication (a’)=(b’) follows from Theorem 4.4. In order to prove
“(a’) = (¢)” we use Lemma 3.5 according to which |[(T>T*v, f)| = |(v, T2T*f)|
< constl| f]leoliv|l1 Vf € C*°. Since v is nonnegative, for f = 1 this relation reads
|1 TETv||; < c||v|| where c = const is independent of €. Let us prove “(b’)=(a’)".
Since the space of finite Borel measures on X,, is weakly complete, then there is a

finite Borel measure v such that lim._,o(7%¢,w) = (v,w). Obviously, v is even.
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Furthermore, for arbitrary infinitely differentiable function ¢, by Theorem A we
have

(T2, 9) = (1, T°%) = lim(T2, T*9) = hm(T2T%0, ) = cau(0, ).

=i
e—0

This implies ¢ “= ¢;1,T°v. The proof of the implication “(c)=(a’)” is similar

to that of “(c)=(a)”. 1

5. LP-theory (the case Rea < 0)

By Corollary 2.6, the multiplier operator T is bounded in L? for
(1-n)/24+1/p—-1/2}(n—1) <Rea <0, 1<p<oo.

Below we obtain a direct representation of T®f, f € LP, and solve the equation
T*f = ¢ explicitly. Let us start with the inversion problem. Our consideration
is based on analytic continuation of the equality

(5.1) T f = / AS(ey)f(y)dy, 0<Re a<1,

o |7} T{(n + 2)/2)
As(r) = 277/2T (/) 2)
1/e
(5.2) x / Aa(8)(1 —g5) (@4 D/2(gg)l-latn)/2(72 _ 1 4 gg)a/2-1gs,
(1-72)/e
to the domain Re o < 0 (cf. (4.3), (4.7)-(4.9)), which is possible for A, (s)
sufficiently smooth. If @ and n are such that A, (s) is not smooth enough, we
could achieve the required smoothness of A,, by putting p = Iiug for some
measure i and some 6 > 0 depending on « and n (see Remark 3.4). In fact
the situation is more complicated because we want to extend (5.1) analytically
so that the relevant LP-theory will be applicable.

LEMMA 5.1: Let 1 —n <Rea <0, f=[-Rea/2]+1. Fix 8 > 0 so that
(5.3) 6>¢—-Re B=[-Re a/2] - Re a/2+(3—-n)/2,

and put g = Iiuo where pg satisfies the following conditions:

(a)

(5.4) /oosjduo(s):o ¥i=0,1,...,m;
0

_ [ [ReB+0) if {Ref+0} <1/2,

_{[Reﬂ+0]+1 if {Ref + 6} >1/2;
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(b)

Re 84+60+1/2 if{Re 8+0} <1/2,

(5.5) /1 s7d|po|(s) < o0, v > { Re +6+1  if{Re B+6}>1/2.

There exist spherical convolution operators B¢, By such that
(i) if f € C™, 0 < & < 1/2, then the analytic continuation of {(5.1) is
represented by

(5.6) TETf = B2y f + Bof;

(ii) if f € LP, 1 < p < 00, then

(5.7) sup [B&fIS ST, sup ||B Wl S 1l
0<e<1/2 0<e<
(5.8) sup [(B&2f) ()] S €®||f|l, for some § > 0.

Proof: We write (5.2) in the form (put 72 — 1 +¢&s = 721, 7 # 0)

a( 148, 72(1—77))<1—72(1—77))“(“+”)/2
el € €
a/2—1 1— —(o+1)/2
(L—n) dn
glatn)/2

69 =(/ . / y e (r) = K2, (7).

By letting (B2, f)(x) = f5 K2, (ay)f(y)dy, i = 1,2, we get

(5.10) TETf = Blf+B of,  0<Rea<l, feC™.

Our goal is to extend (5.10) to Rea < 0 and to estimate the resulting expression.

The integrand in IO( 25(7) has no singularity for —n < Rea < 1 and represents
the analytic function of ¢ in this strip. Since I}:’ﬁ 0= Llfﬁ * 10, then, by (5.4)
and (5.5), due to (1.13) we have (I}F’Lﬁp)(s) = O(s7%) for some 6y > 0. This
yields (we omit simple calculations)

(5.11) |K2,(r)| Se%, 0<e<1/2,

uniformly in « belonging to an arbitrarily fixed compact domain in the strip
—-n < Rea < 1. In order to handle the first term in (5.9) we use integration
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by parts, which gives (up to constant multiples having a nice behaviour in the
a-variable)

-1
(5120 k5 =% 3 .+ 3 6. 0<Rea<l,

k=0 ptq+r=k ptgt+r=¢

(5:13)  apy (1) = eTP(rAPHI(1 - 72 /2) 70TV g3((1 — 72 /2) [e),

bys (1) = () /1/293(1‘72(1—'7)><1—T2(1~n))—(a+n>/2—q

f,p‘q,’r‘ - €p+q+(a+n)/2 Jo £ £
(514) % na/2+€—1(1 _ n)~(a+1)/2—rdn.
Here g5 (s) = (I_lfﬁ_pu)(s) = (Ii+ﬂ+9_pu0)(s), £ and @ are the same as in (5.3).

We observe that by (5.3), Re(8+ 6 — p) > 0 for all p < £. Owing to (5.4) and
(5.5), by Lemma 1.3 we have

O(s#'+0-P) if 5 <1,

(5.1 TS D B
. [ min(y—p" -0, 1-{5' +6}) if {460} <1/2,
(5.16) & = { l+min(y-p"-0-1, 1 -{p'+6}) if {§/+6}>1/2 } >1/2.

By (5.15), |akpqr( 7)| < & uniformly in 7 € [-1,1} and 1 —n < Rea < 1. The

expressions K® 2o(7) and ap’; . (7) constitute the second term in (5.6) for which

(5.8) is valid.
Consider by .

function of & at least for max(—n, —2¢) < Rea < 1. In order to estimate by, , .

For |7| < 1 and £ fixed, this expression represents the analytic

we denote o = Rea, A = 1 — 7%, 2 = A/e, and use the same scheme as in the
proof of Lemma 4.2. If z < 1, then 1/2 > ¢ > 1 — 7%, 72 > 1/2, and we proceed
as follows:

2\p+q (r?=(1-e))/7? 1/2
ae (%)
(5-18)  bopar = Srertarmrz (/0 +/(Tz_<1_e)>/fz )(' )

= Jr+ J3.
By (5.13),
(e-n)/7? 2\ —(a'+n)/2—q+8 +6—
| gg‘p—q—(a’+n)/2/5 ’ na’/2+l—1(A+7’ 77) (o 4m)/2-atf'+0 pdn
0 g
(change the variable: A +72n = A/s)
(5.19)

1 (1 N S)a'/2+€—1d3
B0 1-njz

< a—ﬁ'—-ﬂAﬂ'+9+T‘—n/2 / f=r+p+g.

Ale



Vol. 114, 1999 BLASCHKE-LEVY REPRESENTATIONS 25

If AJe > 1/2, then for all 6y > 0,

A

Al-n/2 (A)50—1(5 )50AT < Al-n/2 (A)50_1‘

(5.20) |JY| S ATz - =

£ 3 &

If Aje < 1/2, a simple estimation of the integral in {5.19) gives the same result
for some 8y > 0. Similarly by (5.15) we obtain

Afe
(5.21) |Jg] S ePArn/2s / sl gy 2Hm g
28/(1+2)

If AJe < 1/2, then for r < n/2+ § (since § > 1/2, this inequality holds for all
r<1?),

BZABS E‘SAT‘"/L‘;(é)Mz_TH < AL="/2 (A)n/2—1.

3 £ £

If 1/2 < A/e (< 1), then |J$| < A" ™2 and we proceed as in (5.20). Let
z=A/e > 1. By (515},

1/2 () /2 —g—p—
by 1< (T%)Pre // na’/2+z—1(A+727)) (a'+n)/2~q~p 6d7l

£,p.q,7 eptat(a’+n)/2 0 c
(7_2)—r—a'/2€5
An/2+6—r

where

2/20 , )
T(T) :/ s /2+€-—1(1 + s)—(a +n)/24r—£-6 ds.
0

2
If A >1/2, then r(r) < [ (...), and we get

, § « —1pA1— ~1-4
o el S8 <EeTIAIT (A )

If A < 1/2; then 7(7) < r(c0) < 00, and therefore
|b£p . rl < E(SAr—n/Q—é < 641A1_n/2(A/€)_1_6.

The second sum in (5.12) gives the first term BZ,f in (5.6). Moreover,
(B2 f)(z) = f): a1{zy) f(y)dy where K§ |(7) is a kernel similar to that in
(4.10). This implies (5.7) and (5.6). |

Remark 5.2: An examination of the estimates of J§ and b?; gr (2 = 1) shows

that, for Re a > (1 —n)/2, it suffices to assume m = [Ref+ 6],y > Ref+ 6 in
all situations.
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THEOREMS 5.3: Let (1 —n)/2+|1/p—1/2|(n—1) < Rea < 0,1 < p < oo.
Assume that p is the wavelet measure defined in Lemma 5.1 (see also Remark
5.2).

(i If o =Tf, f € LP, where T is the “LP-extension” of the operator (2.4),
then the inversion formula (0.13) is valid.

(ii) If ca,u # O (see (0.14)), then for ¢ € LP the following statements are
equivalent: (a) ¢ € T*(LP); (b) the integrals Ty converge in the LP-norm;
(c) suppcecayz 1T @llp < o0

The proof is similar to that of Theorems A and 4.5 (use Lemma 5.1, Theorem
3.6).

Proof of Theorem B: Given f € LP, let {f;} be a sequence of even
C*°-functions approximating f in the LP-norm. Denote & = 1 — n — « so that
Re @ € [1-n, (1 -n)/2]. By Lemma 5.1 (with « replaced by &) and the equality
TETf; = f; we get

o0 dt_ (38) (L") dt
| whe % S i [T )0 55

P

L?)
hm TATeT™ f

]—)OO

56) | hrn n (B3, T° f; + BE,T" fj] = B&\Tf + BET%].

Owing to (5.7) and (5.8) the required result then follows in a standard way. |
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